

EDE MEC 1

**SESSION 2022** 

## CAPET CONCOURS EXTERNE ET CAFEP CORRESPONDANT ET TROISIEME CONCOURS

### Section : SCIENCES INDUSTRIELLES DE L'INGÉNIEUR

### **Option : INGÉNIERIE MÉCANIQUE**

## ÉPREUVE ÉCRITE DISCIPLINAIRE

Durée : 5 heures

Calculatrice autorisée selon les modalités de la circulaire du 17 juin 2021 publiée au BOEN du 29 juillet 2021.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

NB : Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier.

À

#### **INFORMATION AUX CANDIDATS**

Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie

Ces codes doivent être reportés sur chacune des copies que vous remettrez.

► Concours externe du CAPET de l'enseignement public :



► Concours externe du CAFEP/CAPET de l'enseignement privé :



► Troisième concours externe du CAPET de l'enseignement public :



Ce sujet comporte trois parties :

- énoncé → pages 2 à 33 ;
- annexes →pages 34 à 39 ;
  document-réponse (à rendre avec la copie) → pages 40 à 41.

1/41

## Drone gonflable

### 1 Contexte et présentation du sujet

L'utilisation des drones est aujourd'hui très répandue que ce soit pour des applications professionnelles ou ludiques. Afin d'élargir leur domaine d'application à des fonctions ou des environnements plus exigeants, la société DIODON basée à Toulouse a développé deux modèles innovants de drone gonflable étanche et tout-terrain. Le modèle HP30 (figures 1 et 2) est un micro-drone adapté aux missions de sécurité et d'inspection en environnement maritime ou lacustre. Il constitue le support de cette épreuve.



Figure 1 : drone DIODON HP30 et boitier de commande



Figure 2 : modèle virtuel du drone DIODON HP30

La composition du DIODON HP30 est décrite dans le diagramme de définition de blocs fourni en annexe A. Sa structure est organisée autour d'un châssis en matériaux composites. La partie centrale de ce dernier, rigide du fait de sa forme en caisson, constitue un compartiment étanche destiné à abriter l'avionique embarquée : unité centrale, altimètre, GPS, baromètre et autopilote. Les deux extrémités du châssis, de formes demi-cylindriques, participent aux liaisons complètes avec les bras gonflables dont le maintien est assuré par bandes *Velcro*®. Outre leur fonction de flottabilité, ces bras servent également de support aux quatre moteurs électriques – alimentés par la batterie embarquée – actionnant les quatre hélices. Enfin la charge utile, modulable, est constituée le plus souvent d'une caméra stabilisée mécaniquement sur deux axes et offrant des capacités de prises de vue diurne et nocturne.

Les intérêts d'une structure gonflable sur un tel objet technique sont multiples :

- adaptation à l'environnement aqueux : le drone peut se poser sur l'eau, être brièvement immergé, redécoller à partir d'une surface fluide ;
- robustesse : la déformation réversible des bras gonflables constitue un atout majeur en cas de choc avec un obstacle ou le sol ;
- transportabilité : lorsque ses bras sont dégonflés, le drone peut être replié et glissé dans un simple sac à dos.

Dans cette étude, il est proposé :

- de caractériser, en termes de répartition et de niveau, la masse embarquée du drone pour assurer à la fois l'équilibrage (paragraphe 2.1) et la flottabilité (paragraphe 2.3);
- d'évaluer la poussée nécessaire en vol stationnaire ou en vol de croisière afin de sélectionner un type d'hélice adapté (paragraphe 2.4);
- d'évaluer la puissance motrice nécessaire à l'obtention des performances de vitesse visées (paragraphe 3);
- d'analyser l'influence de la principale innovation du drone sa structure gonflable sur sa rigidité, notamment dans des conditions météorologiques dégradées (paragraphe 4);
- d'évaluer la capacité de la batterie nécessaire à l'obtention des performances d'autonomie visées (paragraphe 5).

Chacune des problématiques abordées est associée à un ou plusieurs critères du cahier des charges, lequel est synthétisé dans le diagramme des exigences fourni en annexe B.

## 2 Évaluation des conditions assurant un niveau minimal de performance

**Problématique :** on souhaite évaluer la capacité du drone à transporter une masse embarquée en garantissant un niveau minimal de performance. Une analyse préliminaire a permis d'identifier trois conditions dont le respect est essentiel :

- condition d'équilibrage (paragraphe 2.1) : la répartition des masses doit permettre d'uniformiser l'utilisation des quatre moteurs afin de ne pas réduire la longévité de certains d'entre eux ;
- condition de flottabilité (paragraphe 2.3) : quoique conçu pour évoluer en milieu aqueux, le drone ne doit pas être chargé au point de se retrouver excessivement immergé lorsqu'il est posé sur l'eau ;
- condition de sustentation (paragraphe 2.4) : quelle que soit son orientation par rapport au sol, le drone doit être capable de produire, à travers ses hélices judicieusement choisies, un effort vertical soutenant son propre poids.

Afin de pouvoir mener l'analyse de ces trois conditions, on aborde l'organisation matérielle du drone en distinguant les deux configurations suivantes.

#### Configuration 1 : drone à vide (figure 3).

Le drone à vide est constitué d'un ensemble – noté  $S_{1}$  – comprenant :

- le châssis-caisson ;
- les quatre bras gonflables ;
- les quatre moteurs ;
- les quatre hélices.

Il possède alors deux plans de symétrie :

- le plan frontal dont le vecteur unitaire normal  $\vec{x}_1$  correspond à la direction de roulis ;
- le plan sagittal dont le vecteur unitaire normal  $\vec{y}_1$  correspond à la direction de tangage.

L'intersection de ces deux plans se fait selon une droite dont le vecteur unitaire directeur  $\vec{z}_{t}$  correspond à la direction de lacet.

L'existence des deux symétries planes implique que le centre de masse du drone à vide – noté  $G_{\tau}$  – est nécessairement localisé sur la droite d'intersection entre le plan sagittal et le plan frontal. Cette droite est équidistante des axes de rotation des hélices, supposés être eux-mêmes de direction  $\vec{z}_{\tau}$ .

Dans la suite, on désigne par  $R_{1}(G_{1}, \vec{x}_{1}, \vec{y}_{1}, \vec{z}_{1})$  le repère orthonormé direct lié au drone à vide  $S_{1}$ .

#### Configuration 2 : drone équipé (figure 4).

Le drone équipé comprend :

- l'ensemble  $S_1$  défini précédemment ;
- l'antenne et son support, désignés par  $S_2$ ;
- la batterie, désignée par  $S_3$ ;
- la caméra motorisée et son support amortisseur, désignés par  $S_4$ .



Figure 4 : drone équipé

#### 2.1 Condition d'équilibrage

Comme pour tout appareil volant, la position du centre de masse du drone est une information primordiale. En effet, elle conditionne fortement la stabilité du vol et peut également avoir un impact au niveau de la longévité des moteurs. Elle résulte des influences cumulées des différents sous-ensembles qui composent le drone. Le tableau 1 en définit les données inertielles utiles et suffisantes.

|                 | Masse                          | Centre<br>de masse | Coordonnées du centre de masse<br>dans le repère $R_1(G_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ |                              |                               |  |  |  |  |  |  |  |  |
|-----------------|--------------------------------|--------------------|----------------------------------------------------------------------------------------------|------------------------------|-------------------------------|--|--|--|--|--|--|--|--|
| Drone<br>à vide | <i>m</i> <sub>1</sub> =1,2 kg  | $G_{_{1}}$         | <i>x</i> <sub>1</sub> = 0 mm                                                                 | $y_1 = 0 \text{ mm}$         | <i>z</i> <sub>1</sub> = 0 mm  |  |  |  |  |  |  |  |  |
| Antenne         | <i>m</i> <sub>2</sub> = 0,2 kg | G <sub>2</sub>     | <i>x</i> <sub>2</sub> = -260 mm                                                              | <i>y</i> <sub>2</sub> = 0 mm | z <sub>2</sub> = 30 mm        |  |  |  |  |  |  |  |  |
| Batterie        | <i>m</i> <sub>3</sub> = 0,8 kg | $G_{_3}$           | x <sub>3</sub> = ?                                                                           | y <sub>3</sub> = 0 mm        | z <sub>3</sub> = 30 mm        |  |  |  |  |  |  |  |  |
| Caméra          | $m_4^{} = 0,3 \text{ kg}$      | $G_{_4}$           | <i>x</i> <sub>4</sub> = 250 mm                                                               | <i>y</i> <sub>4</sub> = 0 mm | <i>z</i> <sub>4</sub> = 40 mm |  |  |  |  |  |  |  |  |

Tableau 1 : données inertielles des sous-ensembles du drone

**Question 1 –** *Déterminer* la masse  $m_s$  du drone équipé  $S = \{S_1, S_2, S_3, S_4\}$ .

On appelle  $G_s$  le centre de masse du drone équipé, de coordonnées  $(x_s, y_s, z_s)$  dans le repère  $R_1(G_1, \vec{x}_1, \vec{y}_1, \vec{z}_1)$  associé au drone à vide.

Question 2 - Montrer que :

$$y_{s} = 0$$
  $z_{s} = \frac{1}{m_{s}} (m_{2} z_{2} + m_{3} z_{3} + m_{4} z_{4})$ 

En *déduire* la valeur numérique de z<sub>s</sub>.

Pour des raisons d'optimisation du champ de vision, il est préférable de positionner la caméra le plus possible sur l'avant du drone. Cette disposition tend fatalement à déséquilibrer le drone et oblige certains moteurs à compenser dès le décollage. Cette compensation entraînant à terme leur usure prématurée, il est vivement souhaitable d'équilibrer le drone. Cela consiste à s'assurer que le centre de masse  $G_s$  du drone équipé set le centre de masse  $G_s$  du drone équipé

est localisé sur la droite  $(G_1, \vec{z}_1)$ , laquelle constitue alors l'axe de lacet du drone équipé.

On appelle  $x_3^*$  la valeur de la coordonnée  $x_3$  du centre de masse de la batterie permettant d'assurer la condition d'équilibrage.

**Question 3 –** Établir l'expression littérale de  $x_3^*$ . En déduire la valeur numérique de  $x_3^*$ .

On souhaite pouvoir moduler la masse de la charge utile disposée à l'avant du drone (utilisation d'une caméra plus légère ou plus lourde, ajout d'un autre dispositif de mesure, etc.) sans pour autant remettre en cause la condition d'équilibrage. Pour répondre à l'exigence 1.2.1, la solution retenue consiste à doter la liaison entre la batterie et la plaque support (figure 4) – véritable couvercle du châssis-caisson – d'une possibilité de réglage longitudinal, c'est-à-dire dans la direction  $\vec{x}_1$ . Ainsi, on dispose d'une variation  $\delta x$  de la coordonnée  $x_3$  du centre de masse de la batterie de telle sorte que :

$$x_3 = x_3^* + \delta x$$

Où  $x_3^*$  est la valeur particulière déterminée à la question 3.

La variation  $\delta x$  étant limitée à une amplitude  $\Delta x$ , on a :

$$\delta x \in \left[-\frac{\Delta x}{2},+\frac{\Delta x}{2}\right]$$

 $\Delta x = 10 \text{ mm}$ 

avec :

La figure 5 représente la relation entre la variation  $\delta x$  et la masse de la charge utile  $m_4$  lorsque la condition d'équilibrage est respectée.

**Question 4 –** *Déterminer* l'amplitude  $\Delta m_4$  de la variation de masse de la charge utile permettant de respecter l'amplitude  $\Delta x$  imposée par le cahier des charges. *Évaluer* le pourcentage de variation autour de la masse initiale de la caméra (tableau 1) et *conclure* sur la pertinence de la solution d'équilibrage retenue par rapport à l'exigence 1.2.





#### 2.2 Paramétrage de la position et de l'orientation du drone

Dans ce paragraphe, sans question, on définit les repères et le paramétrage nécessaires pour la suite du problème.

On associe :

- au sol  $S_o$  le repère orthonormé direct  $R_o(O_o, \vec{x}_o, \vec{y}_o, \vec{z}_o)$  où  $\vec{z}_o$  est vertical ascendant ;
- au drone équipé S le repère orthonormé direct  $R_s(G_s, \vec{x}_s, \vec{y}_s, \vec{z}_s)$  où la base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$  est identique à la base  $B_t(\vec{x}_t, \vec{y}_t, \vec{z}_t)$ .

Les repères  $R_0$  et  $R_s$  sont représentés sur la figure 6.



**Figure 6 :** repères  $R_o(O_o, \vec{x}_o, \vec{y}_o, \vec{z}_o)$  et  $R_s(G_s, \vec{x}_s, \vec{y}_s, \vec{z}_s)$ 

On paramètre la position du repère  $R_s$  par rapport au repère  $R_o$  grâce aux coordonnées cartésiennes du point  $G_s$  dans le repère  $R_o$  (figure 6) :

$$\overrightarrow{O_o G_s} = x(t)\vec{x}_o + y(t)\vec{y}_o + z(t)\vec{z}_o$$

D'autre part, on paramètre l'orientation de la base  $B_s$  par rapport à la base  $B_o$  par le biais des angles aéronautiques  $(\psi(t), \theta(t), \varphi(t))$  – respectivement *angle de cap*, *angle d'assiette* et *angle de gîte* – dont la définition est donnée sur les figures 7, 8 et 9.



**Hypothèse 1 :** dans tout le problème, le référentiel associé au sol – dont  $R_o(O_o, \vec{x}_o, \vec{y}_o, \vec{z}_o)$  est le repère géométrique – est supposé galiléen.

#### 2.3 Conditions de flottabilité

On souhaite maintenant analyser la flottabilité du drone pour quantifier la charge maximale à ne pas dépasser afin de limiter son enfoncement dans l'eau.



Figure 10 : drone posé sur l'eau

#### Hypothèse 2 :

- le drone est posé à la surface de l'eau en position « horizontale » de telle sorte que sa base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$  soit confondue avec la base liée au sol  $B_o(\vec{x}_o, \vec{y}_o, \vec{z}_o)$  (figure 11) ;
- le volume de drone immergé noté  $V_{im}$  est symétrique par rapport au plan sagittal  $(G_s, \vec{x}_s, \vec{z}_s)$  et au plan frontal  $(G_s, \vec{y}_s, \vec{z}_s)$ ;
- le drone est en équilibre et n'est soumis qu'à l'action de la pesanteur et celle de l'eau.



**Figure 11 :** situation du drone posé sur l'eau avec  $B_s = B_o$ 

On rappelle les informations utiles dans le traitement des questions suivantes.

On définit l'accélération de la pesanteur par :

$$\vec{g} = -g \vec{z}_0$$

avec  $g = 9,81 \,\mathrm{m \cdot s^{-2}}$ .

Les données inertielles du drone à vide (sans batterie, ni caméra, ni antenne) sont :

- centre d'inertie confondu avec le centre de masse  $G_1$ ;

- masse  $m_1 = 1,2 \text{ kg}$ .

Les données inertielles du drone équipé et équilibré (avec batterie, caméra et antenne) sont :

- centre d'inertie confondu avec le centre de masse  $G_s$  tel que  $\overline{G_1G_s} = Z_s \vec{z}_s$  (figure 12);
- masse  $m_{\rm s}$  (voir question 1).

Enfin, la masse volumique de l'eau, notée  $\rho_e$  dans le cas général, peut adopter la valeur  $\rho_{ed} = 985 \text{ kg} \cdot \text{m}^{-3}$  dans le cas de l'eau douce ou  $\rho_{es} = 1025 \text{ kg} \cdot \text{m}^{-3}$  dans le cas de l'eau salée.

Le volume de drone immergé  $V_{im}$  dépend de la hauteur immergée *h* (figure 12), distance entre le point le plus bas du drone et la ligne de flottaison. Cette relation de dépendance, évaluée à l'aide d'un modèle 3D, est présentée sur la figure 13.



Figure 12 : définition du volume immergé



Figure 13 : volume immergé évalué à partir d'un modèle 3D

Les figures 10 et 12 font apparaître la forme en V de la structure gonflable.

**Question 5 –** *Indiquer* une raison qui justifie cette forme.

On définit le torseur de l'action mécanique de l'eau sur le drone :

$$\left\{T\left(Eau\to S\right)\right\} = \begin{cases} \vec{P}_{A} \\ \vec{O} \end{cases}$$

où  $\vec{P}_A$  est la poussée d'Archimède et le point *C* est le centre de poussée.

**Question 6 –** *Justifier* l'expression de  $\vec{P}_{A}$  :

$$\vec{P}_{A} = \rho_{e} V_{im} g \vec{z}_{0}$$

Puis *montrer* que le centre de poussée *C* respecte nécessairement la condition «  $\overrightarrow{CG_s}$  est colinéaire à  $\vec{z}_s = \vec{z}_o$  ».

**Question 7 –** À partir de l'expression de  $\vec{P}_A$ , *identifier*, parmi les deux situations suivantes, la plus défavorable pour la flottaison :

- drone posé sur l'eau douce ;
- drone posé sur l'eau salée.

On justifiera brièvement la réponse.

Dans la suite, on considère le drone posé en équilibre sur un plan d'eau douce.

**Question 8** – Par l'intermédiaire du théorème de la résultante statique appliqué au drone à vide et judicieusement projeté, *déterminer* le volume immergé (figure 12). En *déduire* la valeur numérique de la hauteur immergée correspondante.

Pour préserver l'intégrité des moteurs, on souhaite éviter que ceux-ci ne soient immergés, même partiellement. Dans le pire des cas, on pourrait tolérer que la ligne de flottaison tangente avec la partie inférieure des moteurs ; cette situation hypothétique correspondrait à une hauteur immergée maximale de 100 mm. Toutefois, pour tenir compte notamment de l'effet de la houle, on choisit de réduire d'un tiers la valeur de la hauteur immergée maximale.

**Question 9 –** *Calculer* la valeur numérique de la hauteur immergée maximale effective – notée  $h_{max}$  – garantissant la non immersion des moteurs en toute condition de houle.

**Question 10 –** *Déterminer* la valeur numérique de  $m_{Smax}$ , masse du drone équipé amenant la hauteur immergée à atteindre sa valeur maximale autorisée.

**Question 11 –** En *déduire*, à partir des données du tableau 1 et sachant que seule la charge utile est sujette à variations de masse, la valeur numérique de  $m_{4 max}$ , masse maximale autorisée de la charge utile.

**Question 12 –** Parmi les deux aspects analysés dans le paragraphe 2.1 (équilibrage) et le paragraphe actuel (flottaison), *identifier* celui qui est prépondérant dans le respect de l'exigence 1.2.

#### 2.4 Condition de sustentation

On souhaite identifier le lien entre la vitesse de rotation des moteurs et la capacité du drone à soutenir sa propre masse en l'air, et ce quelle que soit son orientation par rapport au sol. Menée à terme, cette démarche permet de procéder à une sélection d'hélices compatibles avec l'exigence 1.2.2 du cahier des charges (Annexe B figure 34).

La figure 14 représente le drone en filigrane sur lequel a été superposée une « silhouette filaire » utilisée dans la suite pour la représentation des actions mécaniques. Les principales dimensions de cette silhouette sont :



Figure 14 : silhouette filaire du drone et désignation des hélices

À l'hélice  $H_k$  ( $k \in \{1,2,3,4\}$ ) est associé le repère  $(O_k, \vec{u}_k, \vec{v}_k, \vec{w}_k = \vec{z}_S)$  dont :

- l'origine  $O_k$  est le barycentre de l'hélice ;
- la base  $(\vec{u}_k, \vec{v}_k, \vec{w}_k)$  est orientée par rapport à la base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$  par l'intermédiaire de l'angle  $\alpha_k$ :

$$\alpha_k = \left(\vec{x}_{\rm S}, \vec{u}_k\right) = \left(\vec{y}_{\rm S}, \vec{v}_k\right)$$

où le vecteur  $\vec{u}_k$  correspond à la direction des pales.



**Figure 15 :** définition du repère associé à l'hélice  $H_k$ 

La vitesse de rotation de l'hélice  $H_k$  par rapport au repère lié au drone est caractérisée par le vecteur :

$$\vec{\Omega}(H_k/R_s) = \omega_k \vec{w}_k = \omega_k \vec{z}_s$$

avec :

 $\omega_k = \dot{\alpha}_k$ 

Les hélices  $H_1$  et  $H_4$  ont un pas à droite ; les hélices  $H_2$  et  $H_3$  ont un pas à gauche. Par conséquent :

$$\omega_1 \ge 0$$
  $\omega_2 \le 0$   $\omega_3 \le 0$   $\omega_4 \ge 0$ 

Le torseur de l'action mécanique exercée par l'air sur l'hélice  $H_k$  est de la forme :

$$\left\{T\left(Air \to H_{k}\right)\right\} = \left\{\begin{array}{c} \vec{R}\left(Air \to H_{k}\right)\\ \vec{M}_{O_{k}}\left(Air \to H_{k}\right)\end{array}\right\} = \left\{\begin{array}{c} T_{k} \vec{z}_{s}\\ C_{k} \vec{z}_{s}\end{array}\right\}$$

où la composante de résultante  $T_k$  est appelée *traction de l'hélice* et la composante de moment  $C_k$  est appelée *couple aérodynamique*. Cette action est représentée dans le cas de l'hélice  $H_2$  sur la figure 16 ci-après.

**Hypothèse 3 :** on suppose que la traction et le couple aérodynamique de l'hélice  $H_k$  sont proportionnels au carré de la vitesse de rotation de l'hélice par rapport au drone. Soit :

$$T_{k} = K_{T} \omega_{k}^{2} \qquad C_{k} = \varepsilon_{k} K_{C} \omega_{k}^{2}$$

où les paramètres  $K_{\tau}$  et  $K_c$  sont des caractéristiques intrinsèques de l'hélice, fonctions du diamètre et du pas. Le paramètre  $\varepsilon_k$  adopte quant à lui la valeur -1 ou +1 en fonction de l'hélice considérée :

$$\varepsilon_1 = \varepsilon_4 = -1$$
  $\varepsilon_2 = \varepsilon_3 = +1$ 

#### Modélisation de l'action motrice de l'air sur le drone

**Question 13 –** *Établir* l'expression littérale en  $G_s$  du torseur  $\{T(Air \rightarrow H_1)\}$  en fonction de  $T_1$ ,  $C_1$  et de certains des paramètres géométriques définis sur la figure 14. Par analogie, *extrapoler* le résultat obtenu aux hélices  $H_2$ ,  $H_3$  et  $H_4$ .

L'action motrice de l'air sur le drone entier résulte de la somme des actions de l'air sur chacune des hélices :

$$\left\{T\left(Air \to S\right)\right\} = \sum_{k=1}^{4} \left\{T\left(Air \to H_{k}\right)\right\}$$

**Question 14 –** *Montrer* que le torseur  $\{T(Air \rightarrow S)\}$  peut être écrit sous la forme :

$$\left\{T\left(Air \to S\right)\right\} = \left\{\begin{array}{c} \vec{R}\left(Air \to S\right)\\ \vec{M}_{G}\left(Air \to S\right)\end{array}\right\} = \left\{\begin{array}{c} P \vec{z}_{S}\\ C_{R} \vec{x}_{S} + C_{T} \vec{y}_{S} + C_{L} \vec{z}_{S}\end{array}\right\}$$

où on exprimera la composante de résultante P – appelée *poussée* – et les composantes de moment  $C_R$ ,  $C_T$  et  $C_L$  – appelées respectivement *couple de roulis, couple de tangage* et *couple de lacet* – en fonction des composantes des torseurs  $\{T(Air \rightarrow H_k)\}$  et des paramètres géométriques définis sur la figure 14.

**Hypothèse 4 :** on suppose que les quatre moteurs tournent tous à la même vitesse en valeur absolue. Soit :

$$\omega_1 = \omega_4 = + \omega_0 \qquad \qquad \omega_2 = \omega_3 = - \omega_0$$

avec :

 $\omega_o = \text{cste} > 0$ 

Sur la figure 16, l'action exercée par l'air sur l'hélice  $H_2$  est représentée au droit du point  $O_2$  selon la convention suivante :

- le vecteur simple représente la résultante  $\vec{R}(Air \rightarrow H_2) = T_2 \vec{z}_s$ ;
- le vecteur double représente le moment  $\vec{M}_{O_2}(Air \rightarrow H_2) = C_2 \vec{z}_s$ .





**Question 15 –** *Compléter* la figure 40 du document-réponse – sur laquelle l'action exercée par l'air sur l'hélice  $H_2$  a été reproduite – en y représentant, selon la convention décrite cidessus, les actions mécaniques exercées par l'air sur les hélices  $H_1$ ,  $H_3$  et  $H_4$ . En *déduire* les expressions littérales des composantes P,  $C_R$ ,  $C_T$  et  $C_L$  en fonction de  $K_T$  et  $\omega_0$ .

**Hypothèse 5 :** on suppose maintenant que les moteurs peuvent tourner à des vitesses différentes les unes des autres.

**Question 16 –** *Compléter* la figure 41 du document-réponse en y représentant, selon la convention décrite précédemment, les actions mécaniques exercées par l'air sur les quatre hélices de manière à ce que l'action motrice de l'air sur le drone soit composée, outre de la poussée, de couples de tangage et de roulis tous les deux nuls et d'un couple de lacet strictement positif :

 $P > 0 \qquad C_{\tau} = 0 \qquad C_{R} = 0 \qquad C_{L} > 0$ 

**Question 17 –** En *déduire* la nature du mouvement du drone sous le seul effet de cette action mécanique ainsi que les liens entre les différentes vitesses de rotation des hélices permettant d'obtenir ce mouvement.

#### Dimensionnement des hélices

**Hypothèse 6 :** on suppose que le drone subit l'action de la pesanteur. Celle-ci est modélisée par le torseur :

$$\left\{T\left(\mathsf{Pes}\to\mathsf{S}\right)\right\} = \begin{cases} -m_{\mathsf{S}}\,\mathsf{g}\,\vec{\mathsf{z}}_{o}\\ \vec{\mathsf{O}} \end{cases}$$

avec :

 $m_{\rm s} = 2.5 \,\rm kg$   $g = 9.81 \,\rm m \cdot s^2$ 

**Hypothèse 7 :** on suppose que le drone est en *vol stationnaire,* vol à altitude constante tel que :

 $\vec{V}(G_{\rm S}/R_{\rm o})=\vec{0} \qquad \vec{z}_{\rm S}=\vec{z}_{\rm o}$ 

**Question 18 –** Par l'intermédiaire du principe fondamental de la statique appliqué au drone et judicieusement projeté, *établir* l'expression littérale de la traction de l'hélice notée  $T_o$ , commune aux quatre hélices (hypothèse 4), permettant d'assurer la pérennité du vol stationnaire (hypothèse 7) dans le cadre de l'hypothèse 6. *Déterminer* la valeur numérique de  $T_o$ .

Dans la suite, quelle que soit la valeur numérique trouvée à la question 18, on considère que :

 $T_o = 6 \text{ N}$ 

Pour pouvoir se déplacer horizontalement, le drone doit, à l'instar d'un hélicoptère, s'incliner. Ce faisant, il perd en portance et peut, si celle-ci devient accidentellement inférieure au poids, subir un décrochage. Pour prévenir ce risque et, plus largement, permettre au drone de réaliser des manœuvres autres que de simples vols stationnaires, on dimensionne les hélices de telle sorte que leur traction maximale  $T_{max}$  soit nettement supérieure à la valeur  $T_o$  identifiée précédemment. L'objet des questions suivantes est de déterminer la valeur du coefficient de maximisation  $K_{max}$  tel que :

$$T_{max} = K_{max} \times T_0$$

en fonction de l'inclinaison du drone par rapport au sol, laquelle a une influence majeure sur la vitesse de déplacement du drone (paragraphe 3.3).

Pour caractériser l'inclinaison du drone par rapport au sol, on utilise l'angle  $\beta(t)$  orienté du vecteur  $\vec{z}_{\alpha}$  vers le vecteur  $\vec{z}_{\alpha}$  (figure 17).



Figure 17 : définition de l'angle d'inclinaison β

Question 19 - À l'aide des figures 7, 8 et 9 (page 9), montrer que :

 $\cos\beta = \cos\varphi\cos\theta$ 

**Hypothèse 8 :** on suppose que le drone, d'orientation quelconque mais figée, est en vol à altitude constante par rapport au sol. Soit :

 $\psi(t) = \text{cste}$   $\theta(t) = \text{cste}$   $\varphi(t) = \text{cste}$   $\vec{V}(G_s/R_o) \cdot \vec{z}_o = 0$ 

**Question 20 –** Par l'intermédiaire du théorème de la résultante dynamique appliqué au drone et judicieusement projeté, *montrer* que, dans le cadre de l'hypothèse 8, la poussée P – définie à la question 14 – et l'angle d'inclinaison  $\beta$  sont liés par la relation :

$$P = \frac{m_{\rm s} g}{\cos \beta}$$

**Question 21 –** *Déterminer* la valeur numérique de la poussée maximale  $P_{max}$  permettant d'atteindre l'inclinaison maximale de 30 degrés (exigence 1.1.2.2). En *déduire*, dans le cadre de l'hypothèse 4, la valeur numérique du coefficient de maximisation  $K_{max}$ .

La recherche d'un comportement à très hautes performances dynamiques conduit à adopter dans la suite la valeur numérique :

 $K_{max} = 3$ 

**Question 22 –** *Déterminer* la valeur numérique de la traction maximale de l'hélice  $T_{max}$ .

#### 2.5 Choix de l'hélice

La traction maximale souhaitée étant maintenant connue, on souhaite sélectionner une ou plusieurs hélices adaptées à la réalisation de cette performance. Pour ce faire, on s'appuie sur les résultats de tests expérimentaux rassemblés dans la base de données du département *Aerospace Engineering* de l'*UIUC (University of Illinois Urbana-Champaign)*. Ainsi, il est possible de mener une analyse paramétrique de la *loi de traction* :

$$T_k = f(\omega_k)$$

en fonction des deux caractéristiques géométriques principales d'une hélice que sont le diamètre et le pas. Ceux-ci sont habituellement exprimés en pouce (1 pouce = 2,54 cm). Ainsi, une hélice 10×4 possède un diamètre égal à 10 pouces et un pas égal à 4 pouces.

La figure 35 de l'annexe C illustre l'influence du *diamètre* sur la loi de traction de quatre hélices dont le pas est égal à 4 pouces. *A contrario*, la figure 36 illustre l'influence du *pas* sur la loi de traction de quatre hélices dont le diamètre égal à 11 pouces.

**Question 23 –** Étant donnée l'allure des courbes représentées sur les figures 35 et 36, *justifier* la forme de la loi de traction fournie dans l'hypothèse 3. *Déterminer* la valeur en unités SI du coefficient  $K_{\tau}$  relatif à l'hélice 12 × 4.

**Question 24 –** Pour conclure, parmi les sept hélices dont la loi de traction est représentée sur les figures 35 et 36, *identifier*, en justifiant, celles qui respectent l'exigence 1.2.2 relative à l'obtention de la traction maximale. Sachant que la stabilité du vol est favorisée par des hélices de grand diamètre, *indiquer* l'hélice la plus pertinente parmi celles identifiées précédemment.

### 3 Évaluation de la puissance motrice nécessaire

**Problématique :** après avoir sélectionné un type d'hélice dans le paragraphe 2, on souhaite maintenant déterminer les caractéristiques d'un type de moteur capable d'entraîner les dites hélices et d'atteindre les performances visées (exigence 1.1.2.1). Pour ce faire, on développe un modèle analytique dont la résolution numérique permet de réaliser des simulations. Les résultats de ces dernières vont permettre d'opter pour un choix éclairé de motorisation.

On rappelle l'existence des deux repères suivants (figure 6) :

- $R_o(O_o, \vec{x}_o, \vec{y}_o, \vec{z}_o)$  : repère géométrique du référentiel *galiléen* associé au sol  $S_o$  où  $\vec{z}_o$  est vertical ascendant ;
- $R_s(G_s, \vec{x}_s, \vec{y}_s, \vec{z}_s)$  : repère géométrique lié au drone *S* où  $G_s$  est le centre de masse du drone assimilé dans la suite au centre d'inertie et  $\vec{x}_s$ ,  $\vec{y}_s$  et  $\vec{z}_s$  sont les vecteurs unitaires respectifs des directions de roulis, de tangage et de lacet.

On rappelle également que la position du point  $G_s$  par rapport au repère  $R_o$  et l'orientation de la base  $B_s$  par rapport à la base  $B_o$  sont respectivement paramétrées grâce aux coordonnées cartésiennes du point  $G_s$  dans le repère  $R_o$  (figure 6, page 8) :

$$\overline{O_o G_s} = x(t) \vec{x}_o + y(t) \vec{y}_o + z(t) \vec{z}_o$$

et aux angles aéronautiques  $(\psi(t), \theta(t), \varphi(t))$  (voir figures 7, 8 et 9 page 9).

**Hypothèse 9** : afin de limiter la complexité des développements demandés par la suite, on réduit l'étude au cas d'un *mouvement plan* tel que le plan sagittal du drone  $(G_s, \vec{x}_s, \vec{z}_s)$  reste confondu avec le plan vertical  $(O_o, \vec{x}_o, \vec{z}_o)$  (figure 18).

Par conséquent :

y(t) = 0  $\psi(t) = 0$   $\varphi(t) = 0$ 

Dans ces conditions, seules les variables x(t), z(t) et  $\theta(t)$  évoluent au cours du temps sous l'effet des actions mécaniques extérieures s'exerçant sur le drone : actions motrices de l'air sur le drone à travers les hélices, action de la pesanteur, action du vent, action de l'eau lors d'un amerrissage, etc.

L'ensemble de ces actions est modélisé par le torseur :

$$\left\{ T\left(\overline{S} \to S\right) \right\} = \begin{cases} \overline{R}\left(\overline{S} \to S\right) \\ \overline{M}_{G_{S}}\left(\overline{S} \to S\right) \end{cases} = \begin{cases} R_{x} & M_{x} \\ R_{y} & M_{y} \\ R_{z} & M_{z} \end{cases} \\ \begin{pmatrix} R_{z} & M_{z} \\ R_{z} & M_{z} \end{pmatrix}_{(\bar{x}_{0}, \bar{y}_{0}, \bar{z}_{0})}$$

Dans le cadre de l'hypothèse 9, on a nécessairement :

$$R_{y} = 0 \qquad M_{x} = 0 \qquad M_{z} = 0$$



Figure 18 : illustration de l'hypothèse 9

#### 3.1 Modèle dynamique d'orientation

On s'intéresse à la partie du modèle qui régit l'évolution de l'angle d'assiette  $\theta(t)$ .

**Question 25 –** À partir des figures 7, 8 et 9 adaptées à l'hypothèse 9, *écrire* l'expression littérale du vecteur vitesse instantanée de rotation  $\vec{\Omega}(B_s/B_o) = \vec{\Omega}(S/R_o)$ .

On définit la matrice d'inertie en  $G_s$  du drone S par son expression dans la base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$ :

$$I(G_{S},S) = \begin{bmatrix} I_{x} & 0 & -P_{xz} \\ 0 & I_{y} & 0 \\ -P_{xz} & 0 & I_{z} \end{bmatrix}_{(\bar{x}_{S},\bar{y}_{S},\bar{z}_{S})}$$

**Question 26 –** *Justifier* la forme de la matrice  $I(G_s, S)$ .

On donne les valeurs numériques suivantes :

 $I_x = 1.0 \times 10^{-5} \text{ kg} \cdot \text{m}^2$   $I_y = 2.0 \times 10^{-5} \text{ kg} \cdot \text{m}^2$   $I_z = 5.0 \times 10^{-5} \text{ kg} \cdot \text{m}^2$   $P_{xz} = 5.0 \times 10^{-7} \text{ kg} \cdot \text{m}^2$ 

**Question 27** – *Donner* un argument justifiant la valeur relativement faible du produit d'inertie  $P_{xz}$  par rapport aux moments d'inertie  $I_x$ ,  $I_y$  et  $I_z$ .

Dans la suite, on néglige le produit d'inertie  $P_{xz}$ ; la matrice  $I(G_s, S)$  est donc diagonale.

**Question 28 –** *Établir* l'expression littérale, dans la base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$ , du vecteur  $\vec{\sigma}(G_s, S/R_o)$ , moment cinétique en  $G_s$  du drone *S* dans son mouvement par rapport au repère  $R_o$ .

**Question 29 –** En *déduire* l'expression littérale, dans la base  $B_s(\vec{x}_s, \vec{y}_s, \vec{z}_s)$ , du vecteur  $\vec{\delta}(G_s, S/R_o)$ , moment dynamique en  $G_s$  du drone S dans son mouvement par rapport au repère  $R_o$ .

**Hypothèse 10 :** on suppose que le drone n'est soumis qu'à l'action de la pesanteur et à l'action aérodynamique motrice induite par la rotation des hélices. Le torseur de cette action, simplifié dans le cadre de l'hypothèse 9, prend la forme suivante :

$$\left\{T\left(\operatorname{Air}\to S\right)\right\} = \left\{\begin{array}{c} \vec{R}\left(\operatorname{Air}\to S\right)\\ \vec{M}_{G_{S}}\left(\operatorname{Air}\to S\right)\end{array}\right\} = \left\{\begin{array}{c} P\vec{z}_{S}\\ C_{T}\vec{y}_{S}\end{array}\right\}$$

**Question 30 –** Par l'intermédiaire du théorème du moment dynamique appliqué au drone et judicieusement projeté, *établir* l'équation différentielle régissant l'évolution de l'angle  $\theta(t)$ . On justifiera le choix du point d'écriture du théorème.

On introduit la variable  $\omega_{_{\theta}}$  telle que :

$$\omega_{\theta}(t) = \dot{\theta}(t)$$

**Question 31 –** *Montrer* que le modèle qui régit conjointement l'évolution des variables  $\theta(t)$  et  $\omega_{\theta}(t)$  peut être organisé sous la forme du schéma de la figure 19 dans lequel le bloc 1 correspond à la relation  $\dot{\omega}_{\theta} = f(C_{\tau})$  à expliciter. Le contenu des deux blocs d'intégration relève des méthodes de résolution numérique et n'est pas abordé dans le cadre de ce sujet.



Figure 19 : modèle dynamique d'orientation

#### 3.2 Modèle dynamique de translation

On s'intéresse maintenant à la partie du modèle qui régit l'évolution des variables linéaires x(t) et z(t).

**Question 32 –** *Établir* les expressions littérales, dans la base  $B_o(\vec{x}_o, \vec{y}_o, \vec{z}_o)$ , du vecteur vitesse  $\vec{V}(G_s/R_o)$  et du vecteur accélération  $\vec{\Gamma}(G_s/R_o)$ .

On suppose toujours être dans le cadre de l'hypothèse 10.

**Question 33 –** *Établir* l'expression littérale de la résultante des actions extérieures subies par le drone  $\vec{R}(\vec{S} \rightarrow S)$ .

**Question 34 –** Par l'intermédiaire du théorème de la résultante dynamique appliqué au drone et judicieusement projeté, *établir* les équations différentielles qui régissent les évolutions des variables x(t) et z(t).

On introduit les variables  $v_x$  et  $v_z$  telles que :

$$v_x(t) = \dot{x}(t)$$
  $v_z(t) = \dot{z}(t)$ 

**Question 35** – *Montrer* que le modèle qui régit conjointement l'évolution des variables x(t), z(t),  $v_x(t)$  et  $v_z(t)$  peut être organisé sous la forme du schéma de la figure 20 dans lequel les blocs 2 et 3 correspondent respectivement aux relations  $\dot{v}_x = f(P,\theta)$  et  $\dot{v}_z = f(P,g,\theta)$  à expliciter. L'angle d'assiette  $\theta(t)$ , dont l'évolution est régie par le modèle dynamique d'orientation (paragraphe 3.1), est ici considéré comme une entrée.



Figure 20 : modèle dynamique de translation

#### 3.3 Simulation et dimensionnement de la motorisation

L'association des modèles dynamiques de translation et d'orientation, simplifiés dans le cadre de l'hypothèse 9, puis leur extrapolation hors du cadre de cette hypothèse simplificatrice, conduisent au modèle global représenté sur la figure 21. Celui-ci permet de simuler le comportement du drone dans le cas le plus général : mouvements et actions extérieures quelconques. Tel qu'il est représenté, il s'agit d'un *modèle d'état* : il décrit, à travers un système différentiel du 1<sup>er</sup> ordre, l'évolution du *vecteur d'état*, objet qui regroupe les six variables de position/orientation ( $x, y, z, \psi, \theta, \varphi$ ) et les six variables cinématiques ( $v_x, v_y, v_z, \omega_{\psi}, \omega_{\theta}, \omega_{\varphi}$ ). Ce formatage est indispensable à la mise en œuvre des méthodes de résolution fondées sur les schémas numériques d'intégration (Euler, etc.) et, au-delà, à la synthèse des lois de commande.



Figure 21 : modèle global du drone

On se propose maintenant d'utiliser ce modèle pour évaluer les efforts de propulsion requis afin d'atteindre la performance de vitesse visée (exigence 1.1.2.1) et, de là, en déduire la motorisation adéquate.

**Hypothèse 11 :** on suppose qu'en plus de l'action de la pesanteur et de l'action motrice induite par la rotation des hélices, le drone subit une action aérodynamique liée à son mouvement relatif par rapport à l'air ambiant. Cette action, illustrée sur la figure 22, est modélisée par le torseur suivant :

$$\left\{T'(Air \to S)\right\} = \begin{cases} \vec{R}'(Air \to S) \\ \vec{M}'_{G_{S}}(Air \to S) \end{cases} = \begin{cases} R_{T} \vec{x}_{0} + R_{D} \vec{z}_{0} \\ \vec{0} \end{cases}$$

où les composantes  $R_{\tau}$  et  $R_{D}$  correspondent respectivement à la *trainée* et la *déportance*. Leurs expressions, non essentielles dans cette partie, ne sont pas fournies.



Figure 22 : trainée et déportance

On suppose que les hélices sont de type 12×4.

On envisage d'identifier les conditions d'existence d'un *vol de croisière* : vol rectiligne uniforme à altitude constante respectant les hypothèses 4 et 9. Un tel vol est caractérisé par deux constantes  $v_a > 0$  et  $\theta_a \in [0^\circ, 30^\circ]$  telles que :

$$x(t) = v_o \times t$$
  $z(t) = \text{cste} = 1\text{m}$   $\theta(t) = \theta_o$ 

Une première simulation est réalisée dans les conditions suivantes :

- angle d'assiette :  $\theta_0 = +10^\circ$ ;
- vitesse de rotation des hélices et moteurs :  $\omega_0 = \omega_1 = -\omega_2 = -\omega_3 = \omega_4 = 6000 \text{ tr} \cdot \text{min}^{-1}$ ;
- durée de simulation : 10 secondes.

Les évolutions de x(t) et z(t) issues de cette simulation sont données sur la figure 23.

**Question 36 –** Les conditions de cette première simulation permettent-elles d'obtenir un vol de croisière ? *Justifier*.

On procède à une seconde simulation dont les conditions sont :

- angle d'assiette :  $\theta_o = +10^\circ$ ;
- vitesse de rotation des hélices et moteurs :  $\omega_0 = \omega_1 = -\omega_2 = -\omega_3 = \omega_4 = 6288 \text{ tr} \cdot \text{min}^{-1}$ ;
- durée de simulation : 100 secondes.

Les évolutions de x(t) et z(t) issues de cette simulation sont données sur la figure 24.

**Question 37 –** *Identifier* la distance parcourue par le drone sur la durée de simulation. En *déduire* la vitesse  $v_a$  en km·h<sup>-1</sup> avec laquelle a été réalisé le parcours.



**Figure 23 :** évolutions de x(t) et z(t) issues de la première simulation ( $\omega_0 = 6000 \text{ tr} \cdot \min^{-1}$ )



**Figure 24 :** évolutions de x(t) et z(t) issues de la seconde simulation ( $\omega_o = 6288 \text{ tr} \cdot \min^{-1}$ )

Tournez la page S.V.P.

L'utilisation du modèle numérique dans le cadre d'une démarche essai-erreur analogue à celle menée dans les questions 36 et 37 permet d'identifier les conditions d'existence d'un vol de croisière. Ces conditions se traduisent par deux relations :

$$\theta_o = f(\omega_o)$$
  $v_o = g(\omega_o)$ 

dont les courbes représentatives sont données sur la figure 25.



Figure 25 : conditions d'existence d'un vol en régime de croisière

On souhaite évaluer la motorisation nécessaire pour assurer le vol de croisière dit *nominal*, c'est-à-dire à la vitesse :

$$v_{o}^{*} = 60 \text{ km} \cdot \text{h}^{-1}$$

Dans cette situation, les paramètres  $\theta_{0}$  et  $\omega_{0}$  adoptent les valeurs  $\theta_{0}^{*}$  et  $\omega_{0}^{*}$ .

**Question 38 –** À l'aide des courbes de la figure 25, *identifier* la valeur numérique de  $\omega_o^*$  (en tr/min) correspondant au vol de croisière nominal. En *déduire* la valeur numérique de  $\theta_o^*$  (en degré).

On définit le moment en  $O_k$  du moteur  $M_k$  sur l'hélice  $H_k$  par :

 $\vec{M}_{O_k} \left( M_k \to H_k \right) = -\varepsilon_k \times C_m \vec{z}$  $\varepsilon_1 = \varepsilon_4 = -1 \qquad \varepsilon_2 = \varepsilon_3 = +1$ 

où on rappelle que :

On admet qu'en régime de croisière, le couple moteur nécessaire pour entretenir la vitesse de rotation d'une hélice est identique au couple aérodynamique exercé par l'air sur l'hélice. Ce dernier peut être identifié à partir de la base de données du département *Aerospace Engineering* de l'*UIUC*. Ainsi la figure 26 représente l'évolution du couple aérodynamique d'une hélice 12×4 en fonction de sa vitesse de rotation dans le cas du vol de croisière nominal.



Figure 26 : couple aérodynamique d'une hélice 12×4 (source UIUC)

**Question 39 –** À l'aide de la courbe de la figure 26, et en supposant  $\omega_o^* = 10\,000 \text{ tr} \cdot \text{min}^{-1}$ , *déterminer* la valeur du couple  $C_m^*$  exercé par le moteur sur l'hélice en vol de croisière nominal. En *déduire* la valeur numérique de la puissance de l'action du moteur  $M_k$  sur l'hélice  $H_k$  relativement au drone, notée  $P(M_k \to H_k / R_s)$ , en vol de croisière nominal.

#### 3.4 Choix du moteur

On suppose que le rendement du moteur est :

 $\eta = 0,8$ 

**Question 40 –** *Calculer* la puissance électrique  $P_e^*$  nécessaire en entrée d'un moteur pour maintenir le vol de croisière nominal.

On souhaite sélectionner un moteur électrique de type *brushless* (figure 37) apte à répondre aux besoins de puissance identifiés pour le vol de croisière nominal. Pour ce faire, on donne un extrait de catalogue (annexe D).

**Question 41 –** Parmi les moteurs apparaissant dans le tableau 2, *désigner* par son numéro de référence celui de masse minimale permettant de fournir la puissance requise pour assurer la pérennité du vol de croisière nominal.

## 4 Évaluation de la rigidité de la structure gonflable

**Problématique :** on souhaite déterminer les pressions minimale et maximale au niveau des bras gonflables pour répondre à l'exigence 1.1.4 du cahier des charges tout en respectant la limite d'élasticité du tissu et justifier le choix de la forme conique choisie pour les bras.

L'utilisation d'une structure constituée de quatre bras *gonflables* offre de nombreux avantages : facilité de transport du drone, rapidité de déploiement, légèreté, flottabilité, etc. Mais cette technologie présente aussi des inconvénients dont la nécessité d'un gonflage minimal permettant d'assurer la rigidité de l'enveloppe faite de tissu souple et étanche. En effet, la pression doit être suffisante afin d'éviter que les bras ne plient en cours de vol. Par ailleurs, elle est limitée par la résistance mécanique du tissu composite formant l'enveloppe.

#### Hypothèse 12 :

- le drone est en position horizontale de telle sorte que la direction de son axe de lacet  $\vec{z}_s$  coïncide avec la direction verticale ascendante  $\vec{z}_o$  (figure 27) ;
- chaque bras est soumis uniquement à l'action du vent suivant  $\vec{x}_s$ ;
- le poids propre d'un bras et celui du moteur associé sont négligés.

On rappelle que  $R_s(G_s, \vec{x}_s, \vec{y}_s, \vec{z}_s)$  est le repère lié au drone dont l'origine  $G_s$  est le centre de masse et  $\vec{x}_s$ ,  $\vec{y}_s$  et  $\vec{z}_s$  sont respectivement les vecteurs unitaires des directions de roulis, de tangage et de lacet.

On considère le bras avant gauche auquel on associe le repère  $(O, \vec{x}, \vec{y}, \vec{z})$  (figure 27). L'origine O est l'intersection de la ligne moyenne du bras avec le plan sagittal du drone et la base  $(\vec{x}, \vec{y}, \vec{z})$ , définie en cohérence avec les notations usuelles de la résistance des matériaux, est telle que :

- le vecteur  $\vec{x}$  est le vecteur unitaire directeur de la ligne moyenne du bras ;

- le vecteur  $\vec{y}$  est le vecteur unitaire de la direction du vent ; on a donc  $\vec{y} = -\vec{x}_s$ .

On assimile le bras à une poutre encastrée en O dans le corps du drone et on désigne par *G* le centre de la section courante.



**Figure 27 :** repère local  $(O, \vec{x}, \vec{y}, \vec{z})$  lié au bras avant gauche

Pour cette étude préliminaire, chaque bras est modélisé par une poutre cylindrique tubulaire de longueur L, de rayon extérieur R et d'épaisseur e (figure 28).

La poutre est supposée encastrée à une extrémité avec le corps du drone et libre à l'autre extrémité.



Figure 28 : géométrie du modèle simplifié

Les données relatives au bras sont les suivantes :

- longueur L = 275 mm ;
- rayon extérieur de la section tubulaire cylindrique R = 25 mm.

Les données relatives au tissu composite sont les suivantes :

- limite d'élasticité  $R_{e}$  = 219 MPa ;
- module d'Young du tissu E = 35 MPa ;
- épaisseur e = 250 μm.

On désigne par *p* la pression de gonflage.

Enfin, l'expression du moment quadratique pour une section circulaire pleine de rayon *R* est fournie en annexe E.

**Question 42 –** *Déterminer* l'expression du moment quadratique par rapport aux axes  $(G, \vec{y})$ 

et  $(G, \vec{z})$  d'une section tubulaire de rayon *R* et d'épaisseur *e* (figure 28, schéma de droite).

#### 4.1 Vérification de la résistance à la précontrainte du tissu enveloppe

La mise sous pression induit un état de précontrainte initial caractérisé par les contraintes normale  $\sigma_N^o$  et tangentielle  $\sigma_\tau^o$  représentées sur la figure 29 et définies respectivement par :



Figure 29 : répartition des contraintes dans la poutre gonflée sans chargement extérieur

**Question 43 –** Après avoir identifié la contrainte prépondérante parmi  $\sigma_N^o$  et  $\sigma_T^o$ , *calculer* la valeur numérique de la pression maximale applicable à la poutre pour ne pas dépasser la limite d'élasticité du tissu. *Conclure* quant au respect de l'exigence 1.1.4.

#### 4.2 Vérification du non-plissement des bras gonflables

Les structures gonflables sont sujettes à un phénomène de plissement (figure 30) à éviter impérativement en cours de vol. Ce phénomène non-linéaire apparaît lorsque la contrainte normale totale  $\sigma_N$  dans le tissu – qui résulte de la somme de la précontrainte normale due au gonflage  $\sigma_N^o$  et de la contrainte normale due aux sollicitations extérieures  $\sigma_N^{ext}$  – s'annule :

$$\sigma_N = \sigma_N^o + \sigma_N^{ext} = 0$$



Figure 30 : photo d'un bras en présence de pli

Lors de son déplacement le drone doit supporter l'effet du vent sur les bras gonflables. Le cas le plus critique est celui du déplacement horizontal du drone à sa vitesse maximale de 60 km  $\cdot$  h<sup>-1</sup> face au vent maximal de 25 nœuds soit 46,3 km  $\cdot$  h<sup>-1</sup> imposé dans le cahier des charges.

#### Contrainte normale due aux effets aérodynamiques

Le modèle retenu pour l'action du vent est une répartition linéique de force homogène le long de la poutre (figure 31). Ainsi, la force élémentaire du vent sur un élément de poutre de longueur dx est :

$$d\vec{F}_{v}(M) = \frac{1}{2} \rho_{a} C_{y} v^{2} (2 R dx) \vec{y}$$

où  $\rho_a = 1,22 \text{ kg} \cdot \text{m}^{-3}$  est la masse volumique de l'air,  $C_y = 0,7$  le coefficient de trainée de la poutre cylindrique,  $v = 60 + 46,3 \text{ km} \cdot \text{h}^{-1}$  la vitesse du vent relatif et 2R dx = dS est la surface projetée de l'élément de poutre de longueur dx.



Figure 31 : modèle de poutre du bras sous l'action du vent

**Question 44 –** *Montrer que* le torseur des actions mécaniques de cohésion le long de la poutre soumise à l'action du vent s'écrit :

$$\{T_{coh}\} = \begin{cases} 0 & 0 \\ T_{y}(x_{G}) & 0 \\ 0 & M_{fz}(x_{G}) \\ \end{cases}_{(\bar{x},\bar{y},\bar{z})}$$

où *G* est le centre de surface de la section d'abscisse  $x_{G}$ . Exprimer  $T_{y}(x_{G})$  et  $M_{fz}(x_{G})$  en fonction de  $\rho_{a}$ ,  $C_{y}$ , v, R, L et  $x_{G}$ .

Question 45 - Identifier à quel(s) type(s) de sollicitation(s) est soumise la poutre.

**Question 46 –** *Identifier* l'abscisse  $x_G$  de la poutre pour laquelle le moment de flexion est maximal. En *déduire* que l'expression du moment de flexion maximal sous l'action du vent est :

$$M_{fz vent max} = \frac{1}{2} \rho_a C_y v^2 R L^2$$

**Question 47 –** *Conclure* sur l'intérêt de la forme conique des bras gonflables choisie par le constructeur.

L'expression de la contrainte normale est fournie en annexe E.

**Question 48 –** Le moment de flexion  $M_{fz}(x_G)$  le long de la poutre étant positif, *compléter* la figure 42 du document-réponse – sur laquelle apparaît déjà la répartition de la précontrainte normale due au gonflage  $\sigma_N^o$  – en y représentant l'allure de la répartition de contrainte normale due à l'action du vent  $\sigma_N^{ext}$  dans la section courante d'abscisse  $x_G$ .

#### Superposition des effets de gonflage et aérodynamiques

**Question 49 –** *Montrer* que l'annulation de la contrainte normale  $\sigma_N = \sigma_N^0 + \sigma_N^{ext}$  – synonyme de l'apparition d'un pli – peut survenir au point de la section tel que y = R. *Exprimer* la valeur de la contrainte normale  $\sigma_N^{ext}$  en ce point en fonction du moment fléchissant  $M_{fz}(x_G)$  du moment quadratique  $I_{Gz}$  et du rayon *R*.

**Question 50 –** À partir de l'expression de  $\sigma_N^{ext}$  pour y = R, *déduire* que le moment fléchissant à la limite du plissement s'exprime par :

$$M_{f \, lim} = \frac{p \, I_{Gz}}{2 \, e}$$

où *p* est la pression de gonflage, *e* l'épaisseur du tissu,  $I_{Gz}$  le moment quadratique par rapport à l'axe  $(G, \overline{z})$ .

#### 4.3 Choix de la pression minimale

La figure 32 représente le résultat d'une simulation donnant le moment de flexion limite  $M_{flim}$  au-delà duquel apparaît un plissement des bras gonflables en fonction de la pression de gonflage. La valeur du moment de flexion maximal sous l'action du vent  $M_{fz vent max}$  est également représentée.



**Figure 32 :** moment  $M_{flim}$  en fonction de la pression de gonflage

**Question 51 –** *Indiquer* la pression minimale permettant d'éviter le plissement des bras gonflables en vol. *Conclure* sur le respect de l'exigence 1.1.4 du cahier des charges pour la sollicitation étudiée.

## 5 Évaluation de la capacité de la batterie

**Problématique :** après avoir sélectionné un type de moteur dans le paragraphe 3.4, on souhaite maintenant dimensionner la batterie pour assurer une alimentation suffisante des moteurs lors de phase de forte sollicitation (exigence 1.1.3) mais également assurer une autonomie suffisante lors d'un vol de croisière nominal.

On suppose que le modèle de moteur sélectionné est celui de référence AT2826 (tableau 2 de l'annexe D). L'une des principales caractéristiques d'un moteur électrique de type *brushless* est celle qui quantifie la proportionnalité entre la vitesse de rotation de l'arbre moteur exprimée en tr/min et la tension d'alimentation exprimée en V :

 $K_v = \frac{\text{vitesse de rotation}}{\text{tension d'alimentation}}$ 

**Question 52 –** *Identifier* la valeur du paramètre  $K_v$  du modèle de moteur sélectionné.

On souhaite dimensionner la batterie adaptée à l'alimentation de ce type de moteur de manière à atteindre certaines des performances visées. On doit en particulier définir :

– la tension maximale délivrée  $U_{\scriptscriptstyle b}$  exprimée en V ;

– la capacité  $C_b$  de la batterie exprimée en A·h.

**Question 53** – *Déterminer* la tension  $U_b$  permettant aux moteurs d'atteindre *ponctuellement* leur vitesse de rotation maximale :

$$\omega_{max} = 20000 \text{ tr} \cdot \text{min}^{-1}$$

**Question 54 –** Sachant que la batterie est constituée d'accumulateurs élémentaires associés en série, chacun délivrant une tension de  $U_{acc} = 3,7 \text{ V}$ , *déterminer* le nombre *N* nécessaire d'accumulateurs pour produire la tension  $U_{b}$ .

**Question 55 –** *Déterminer* la capacité de la batterie  $C_b$  permettant au drone de réaliser pendant une durée de 5 minutes un vol de croisière nominal pour lequel la vitesse de rotation des hélices et la puissance électrique requise sont respectivement :

$$\omega_o^* = 10\,000 \text{ tr} \cdot \text{min}^{-1}$$
  $P_e^* = 500 \text{ W}$ 

Un extrait de la plaquette de présentation du drone est fourni en annexe F. Il mentionne l'autonomie du drone en vol *stationnaire*.

**Question 56 –** En s'inspirant du cheminement adopté dans les paragraphes 2.5, 3.3 et 5, *expliquer* en moins de cinquante mots la démarche qui permettrait d'évaluer la performance d'autonomie en vol stationnaire.





C





Figure 34 : diagramme des exigences partiel du DIODON HP30



Annexe C – Loi de traction d'hélices

Figure 35 : influence du diamètre sur la loi de traction (source UIUC)



Figure 36 : influence du pas sur la loi de traction (source UIUC)

## Annexe D – Données techniques du moteur sélectionné



Figure 37 : moteur *brusless* sélectionné (source *T-Motor*)

|        |       |        |        |       |           |        |        |          | Max      | Max    | Max      |  |
|--------|-------|--------|--------|-------|-----------|--------|--------|----------|----------|--------|----------|--|
| Def    | RPM/V | Stator | Stator | Shaft | Motor     | Weight | No.of  | Constant | Burst    | Power  | Thrust   |  |
| Rei    | (KV)  | Dia    | Length | Dia   | Dimension | (g)    | Cells  | Current  | Current  | (watt) | (KG)     |  |
|        |       | (mm)   | (mm)   | (mm)  | (DiaxLen) |        | (LiPo) | [A]      | (15s)[A] | (15s)  |          |  |
| AT2216 | 1250  | 22     | 16     | 3     | 27.8x34   | 68     | 2-4S   | 27       | 40       | 450    | 1.2-1.5  |  |
| AT2814 | 1000  | 28     | 14     | 4     | 35x36     | 103    | 3-6S   | 40       | 60       | 700    | 2-2.3    |  |
| AT2820 | 830   | 28     | 20     | 5     | 35x42     | 132    | 3-6S   | 3-6S 43  |          | 800    | 2.8-3.0  |  |
| AT2826 | 550   | 28     | 26     | 5     | 35x48     | 169    | 6-10S  | 48       | 75       | 1000   | 3.2-3.5  |  |
| AT2828 | 900   | 28     | 26     | 5     | 35x48     | 167    | 3-6S   | 53       | 75       | 880    | 3.2-3.5  |  |
| AT3520 | 730   | 35     | 20     | 5     | 43x45     | 206    | 3-6S   | 60       | 85       | 1200   | 3.8-4.2  |  |
| AT3522 | 880   | 35     | 20     | 5     | 43x45     | 207    | 3-6S   | 60       | 85       | 1300   | 3.8-4.2  |  |
| AT3530 | 570   | 35     | 30     | 6     | 43x55     | 288    | 3-6S   | 65       | 90       | 1800   | 4.5-4.8  |  |
| AT3540 | 700   | 35     | 30     | 6     | 43x55     | 289    | 3-6S   | 3-6S 70  |          | 1900   | 4.5-4.8  |  |
| AT4120 | 550   | 41     | 20     | 6     | 49.5x49   | 286    | 4-8S   | 70       | 90       | 2100   | 4.8-5    |  |
| AT4130 | 275   | 41     | 30     | 6     | 49.5x59   | 387    | 6-10S  | 75       | 95       | 2800   | 5.5-6.3  |  |
| AT5330 | 190   | 53     | 30     | 8     | 63x63     | 635    | 6-12S  | 80       | 120      | 4500   | 8.0-10.0 |  |
| AT2202 | 2300  | 22     | 2      | 3     | 27x18     | 14     | 1S-3S  | 6        | 11       | 90     | 250-280G |  |
| AT2204 | 1850  | 22     | 4      | 3     | 27x20     | 20     | 1S-3S  | 7        | 14       | 120    | 320-350G |  |
| AT2206 | 1500  | 22     | 6      | 3     | 27x22     | 25     | 1S-3S  | 10       | 20       | 200    | 400-500G |  |

Tableau 2 : caractéristiques des versions du moteur sélectionné (source T-Motor)

## Annexe E – Formulaire de résistance des matériaux

Moment quadratique par rapport aux axes  $(G, \vec{y})$  et  $(G, \vec{z})$  pour une section circulaire de



Figure 38 : paramétrage de la poutre et géométrie de la section circulaire

|                  | Relations entre<br>contraintes et efforts<br>intérieurs | Relations entre<br>contraintes et<br>déformations | Relations entre<br>déplacements et<br>efforts |
|------------------|---------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| Traction pure    | $\sigma = \frac{N}{S}$                                  | σ=Εε                                              | $\Delta L = \frac{N L_0}{E S}$                |
| Cisaillement pur | $\tau = \frac{T}{S}$                                    | $	au = G \gamma$                                  |                                               |
| Flexion simple   | $\sigma = -\frac{M_{fz} y}{I_{Gz}}$                     | $\varepsilon = \frac{\sigma}{E}$                  | $EI_{Gz}$ y" = $M_{fz}$                       |

**Tableau 3 :** formules fondamentales de résistance des matériaux

| Notation        | Signification                                        | Unité |
|-----------------|------------------------------------------------------|-------|
| N               | effort normal                                        | Ν     |
| Т               | effort tranchant                                     | Ν     |
| S               | section                                              | mm²   |
| M <sub>fz</sub> | moment de flexion                                    | N∙m   |
| У               | position du point M considéré dans la section droite | mm    |
| I <sub>Gz</sub> | moment quadratique                                   | mm⁴   |
| σ               | contrainte normale                                   | MPa   |
| E               | module d'Young                                       | MPa   |
| 3               | déformation                                          |       |
| au              | contrainte de cisaillement                           | MPa   |
| G               | module de cisaillement                               | MPa   |
| γ               | angle de cisaillement                                |       |
| ΔL              | allongement                                          | mm    |
| L <sub>0</sub>  | longueur initiale                                    | mm    |

**Tableau 4 :** nomenclature du formulaire de résistance des matériaux

## Annexe F – Plaquette de présentation du drone DIODON HP30

## CARACTÉRISTIQUES TECHNIQUES

RAYON D'ACTION

4 kilomètres

CAPTEUR EO/IR STABILISÉ

E0: 1920x1080 / IR: 640x512

AUTONOMIE 30 minutes

Ø



RÉSISTANT AU VENT :<u>=</u>) 25 nœuds

| CARACTÉRISTIQUES                                          | DONNÉES                                                                                                                    | UNITÉS        |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------|
| Dimensions plié                                           | L=240 × I=380 × H=120                                                                                                      | mm            |
| Dimensions déplié                                         | L=500 × I=600 × H=200                                                                                                      | mm            |
| Masse au décollage                                        | 2 500                                                                                                                      | g             |
| Autonomie (en vol stationnaire)                           | 30                                                                                                                         | min           |
| Batterie                                                  | Lithium-Ion                                                                                                                | 10S           |
| Rayon d'action (Line Of Sight)                            | 4                                                                                                                          | km            |
| Temps de déploiement                                      | <90                                                                                                                        | s             |
| Etanchéité                                                | 56                                                                                                                         | Équivalent IP |
| Vitesse maximale                                          | 60                                                                                                                         | km/h          |
| Lien                                                      | Numérique                                                                                                                  |               |
| Avionique intégrée                                        | Altimètre, GPS, Baromètre, Autopilote                                                                                      |               |
| Charge utile stabilisée sur 2 axes<br>mécaniques étanches | Caméra Jour:<br>- Résolution full HD: 1920 x 1080<br>Caméra thermique:<br>- Résolution: 640 x 512 (black hot/white hot/ pa | ramétrable)   |

Figure 39 : extrait de la plaquette de présentation du drone DIODON HP30

| Modèle CMEN-D<br>Non<br>(Suivi, s'il y a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OC v2 ©NEOPTEC<br>n de famille :<br>lieu, du nom d'usage)        |        |         |             |            |        |          |           |           |         |     |        |    |  |   |  |    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------|---------|-------------|------------|--------|----------|-----------|-----------|---------|-----|--------|----|--|---|--|----|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prénom(s) :                                                      |        |         |             |            |        |          |           |           |         |     |        |    |  |   |  |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Numéro<br>Inscription :<br>(Le                                   | numéro | est cel | ui qui figi | ıre sur la | convoc | ation ol | ı la feui | lle d'érr | nargeme | Né( | (e) lo | e: |  | / |  | ]/ |  |  |  |
| (Remplir cette partie a<br>Concours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Remplir cette partie à l'aide de la notice) Concours / Examen : |        |         |             |            |        |          |           |           |         |     |        |    |  |   |  |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Epreuve : Matière : Session :                                    |        |         |             |            |        |          |           |           |         |     |        |    |  |   |  |    |  |  |  |
| <ul> <li>Remplir soigneusement, sur CHAQUE feuille officielle, la zone d'identification en MAJUSCULES.</li> <li>Ne pas signer la composition et ne pas y apporter de signe distinctif pouvant indiquer sa provenance.</li> <li>Numéroter chaque PAGE (cadre en bas à droite de la page) et placer les feuilles dans le bon sens et dans l'ordre.</li> <li>Rédiger avec un stylo à encre foncée (bleue ou noire) et ne pas utiliser de stylo plume à encre claire.</li> <li>N'effectuer aucun collage ou découpage de sujets ou de feuille officielle. Ne joindre aucun brouillon.</li> </ul> |                                                                  |        |         |             |            |        |          |           |           |         |     |        |    |  |   |  |    |  |  |  |

EDE MEC 1

# **Document réponse**

# Tous les documents réponses sont à rendre, même non complétés.

D



Figure 40 : réponse à la question 15



Figure 41 : réponse à la question 16



