

EAE SIM 2

SESSION 2022

AGRÉGATION CONCOURS EXTERNE

Section : SCIENCES INDUSTRIELLES DE L'INGÉNIEUR

Option : SCIENCES INDUSTRIELLES DE L'INGÉNIEUR ET INGÉNIERIE MÉCANIQUE

MODÉLISATION D'UN SYSTÈME, D'UN PROCÉDÉ OU D'UNE ORGANISATION

Durée : 6 heures

Calculatrice autorisée selon les modalités de la circulaire du 17 juin 2021 publiée au BOEN du 29 juillet 2021.

L'usage de tout ouvrage de référence, de tout dictionnaire et de tout autre matériel électronique est rigoureusement interdit.

Si vous repérez ce qui vous semble être une erreur d'énoncé, vous devez le signaler très lisiblement sur votre copie, en proposer la correction et poursuivre l'épreuve en conséquence. De même, si cela vous conduit à formuler une ou plusieurs hypothèses, vous devez la (ou les) mentionner explicitement.

NB : Conformément au principe d'anonymat, votre copie ne doit comporter aucun signe distinctif, tel que nom, signature, origine, etc. Si le travail qui vous est demandé consiste notamment en la rédaction d'un projet ou d'une note, vous devrez impérativement vous abstenir de la signer ou de l'identifier.

INFORMATION AUX CANDIDATS

Vous trouverez ci-après les codes nécessaires vous permettant de compléter les rubriques figurant en en-tête de votre copie

Ces codes doivent être reportés sur chacune des copies que vous remettrez.

Ce sujet comporte :

- le sujet et le travail demandé (pages 1 à 26) ;
- les documents techniques (pages 27 à 39) ;
- les documents réponses DR1, DR2 et DR3.

JOUG DE MÊLÉE ROBOTISÉ « STRONGARM »

I. PRESENTATION GENERALE

I.1 Contexte

Le rugby est un sport dont les variantes sont nombreuses : rugby à XV, rugby à XIII ou encore rugby à VII. Malgré tout, ces disciplines présentent de nombreuses similitudes parmi lesquelles l'existence de mêlées fermées plus simplement appelées mêlées. Elles opposent, dans le cadre du rugby à XV (celui qui nous intéresse ici), 8 joueurs de chaque équipe dans une épreuve de force où il s'agit de pousser plus fort que ses adversaires afin de récupérer le ballon placé au sol, en terrain neutre (voir annexe 1).

Figure 1 - Mêlée fermée au rugby à XV

Dans la logique de professionnalisation des joueurs, les besoins en termes de formation n'ont cessé de croître face aux exigences toujours plus élevées de performances individuelles et collectives. De plus, les accidents dans cette phase de jeu sont très fréquents : on en recense 16 000 chaque année en France, dont près de 800 traumatismes du rachis cervical, c'est-à-dire du haut de la colonne vertébrale. C'est donc dans ces logiques de performance et de protection des joueurs que la technologie s'est invitée au cœur même des centres de formation.

Divers types de machines ont déjà été développés, allant du joug traditionnel, à la machine à structure parallèle « M-rex » de Marcoussis, en passant par la « Scrummachine » (joug semi-automatique) dont tous les comités départementaux sont d'oreset-déjà équipés.

Joug traditionnel

Scrum machine

M-rex

Figure 2 - Différents modèles de simulateurs de mêlée

1/39

C'est dans ce cadre que l'Association Sportive Montferrandaise (ASM Clermont-Auvergne), club à forte tradition en termes de formation de joueurs de haut-niveau, a souhaité s'équiper d'une machine d'entraînement individuelle robotisée pour la mêlée fermée. Dans cette optique, l'ASM a collaboré avec SIGMA Clermont, Phiméca et 2MAtech pour élaborer un joug d'entraînement individuel à la mêlée fermée baptisé « Strongarm ».

Figure 3 - Joug de mêlée robotisé Strongarm en phase d'essai

I.2 Exigences globales du système

L'analyse fonctionnelle globale du système est donnée en annexe 2. On pourra retenir les principales exigences liées à l'utilisation de ce système. Un diagramme des exigences plus détaillé est fourni *Figure 29* (voir annexe 3).

Figure 4 - Diagramme des exigences partiel

I.3 Architecture globale du système

Le système Strongarm est constitué d'une tête de joug instrumentée reliée à un robot industriel 6 axes ABB IRB 6620 par un dispositif de changement rapide d'outil Destaco.

Figure 5 - Architecture globale

Ce système a été conçu pour simuler 4 scénarios différents :

Scénario 1 Mêlée stable	Le joueur pousse le robot (suivant la direction z), qui lui résiste pour conserver sa position.	Direction z
Scénario 2 Mêlée poussée	Le robot pousse le joueur, qui doit tenter de s'opposer à ce mouvement. La tête de joug est en translation suivant la direction z.	Direction z
Scénario 3 Mêlée tournée	Le robot pivote autour de l'axe 1 du robot (rotation autour de l'axe y; voir annexe A4.1).	Axe 1
Scénario 4 Mêlée effondrée	Le robot déplace la tête de joug en translation suivant la direction y (vers le bas).	Direction y

Figure 6 - Les 4 scénarios de mêlées simulables par le système Strongarm

Le pilotage du robot peut s'effectuer en commande manuelle, par l'intermédiaire d'une manette de jeu, ou en mode automatique avec des scénarios prédéfinis.

L'opérateur peut accéder en temps réel aux mesures de poussée suivant les deux épaules du joueur.

Le joueur peut, quant à lui, observer en temps réel sa poussée et sa posture en réalité augmentée grâce à un écran positionné sous la tête de joug et des caméras disposées tout autour du système (non étudiés dans ce sujet).

I.4 Présentation des problématiques et de l'objectif général du sujet

Les sept parties composant ce sujet ont pour objectif de valider la structure retenue pour le système Strongarm, au regard des exigences listées en annexe 3. Chacune de ces parties vise des objectifs spécifiques :

- la première partie, dépourvue de questions permet de s'approprier le sujet et le contexte d'étude ;
- la deuxième partie a pour objectif de valider le choix du robot ABB IRB 6620 ;
- la troisième partie porte sur l'étude de la cinématique du robot afin de valider l'adéquation du robot avec les performances attendues ; elle a également pour objectif de vérifier le dimensionnement des moteurs ;
- la quatrième partie s'intéresse quant à elle à la validation de l'asservissement choisi pour la commande de l'axe 1 du robot ;
- la cinquième partie a pour objectif de valider la conception de la tête de joug instrumentée ;
- la sixième partie a pour objectif de vérifier si l'interface tête de joug robot est correctement dimensionnée ;
- la dernière partie consiste enfin à effectuer la synthèse des études menées au fil du sujet.

II. VALIDATION DU CHOIX DU ROBOT ABB IRB 6620

L'objectif de cette partie est de vérifier si le robot industriel ABB IRB 6620 est capable de satisfaire l'exigence 1.1 : « Simuler une mêlée de rugby ».

Lors de l'étude préliminaire de conception, le constructeur a choisi d'utiliser un robot industriel ABB IRB 6620. Ce robot doit permettre de simuler les quatre scénarios de mêlée décrits précédemment, en termes de mouvements et d'efforts.

Question 1 : représenter sur le document réponse DR1 la zone de travail atteignable par le robot. Vérifier ainsi que le robot est capable de satisfaire l'exigence 1.1.1.

La *Figure* 7 montre les efforts que fournit un joueur de haut niveau lors d'une poussée en mêlée (mesure représentative extraite d'une campagne d'essais sur un échantillon de 68 joueurs). Les composantes de cet effort suivant les axes repérés *Figure 5* sont notés F_x , F_y et F_z .

Figure 7 - Forces de poussée exercées par un joueur de haut niveau, mesurées par l'ergomètre Rugbor v2

Question 2 : à partir de ces courbes, discuter de la valeur limite définie pour les exigences 1.1.2.1 et 1.1.2.2. À l'aide de l'extrait de la documentation technique fournie en annexe 4, conclure quant à la validité du choix de ce robot.

Comme le montre la *Figure 5*, la tête de joug (étudiée partie V) est montée sur le robot par l'intermédiaire d'un changeur automatique (étudié partie VI). Afin de vérifier si l'ensemble peut être mis en mouvement par le robot, le constructeur fournit un diagramme de charge donné en annexe 4. Par hypothèse, la masse du changeur automatique est négligée pour cette partie II.

Question 3 : à partir du diagramme de charge, des exigences décrites en annexe 3 et de la *Figure 35* (annexe A5.1), déterminer si le robot choisi est correctement dimensionné pour mettre en mouvement la tête de joug.

Question 4 : conclure quant à la capacité du robot ABB IRB 6620 à satisfaire l'ensemble des exigences du cahier des charges.

III. ÉTUDE DE LA COMMANDE

L'objectif de cette partie est de vérifier que les moteurs du robot sont bien adaptés à l'utilisation du simulateur lors des différents scénarios d'entrainement.

Lors des quatre scénarios d'entraînement, la mêlée simulée n'est pas nécessairement immobile : elle avance, recule et se déplace sur les côtés. Pour réaliser notamment les scénarios 2, 3 et 4, le robot doit être capable de générer la trajectoire de la tête de joug souhaitée.

Les mouvements de la tête de joug étant prédéterminés pour chaque scénario, il est nécessaire de déterminer les lois de commande des moteurs du robot ABB pour reproduire fidèlement le mouvement de la tête de joug.

On précise que l'ensemble **{5+6}** reste **parallèle au sol** lors des quatre scénarios, afin d'obtenir une position de poussée ergonomique.

Le schéma cinématique du robot 6 axes est donné en annexe 4. Pour cette étude, on se place dans le **scénario 2**, lorsque le robot pousse le joueur.

Dans les parties III et IV, on adopte la modélisation plane de la *Figure 8*, avec $\theta_1 = \theta_6 = 0^\circ$. Le bâti **(0)** est lié à un référentiel galiléen. On constate sur cette modélisation que l'architecture a été simplifiée par rapport à la *Figure 32* (annexe A4.2), en faisant apparaître les angles $\theta_{3'}$ et $\theta_{5'}$.

Figure 8 - Modèle plan simplifié du robot ABB IRB 6620

Question 5 : pour le scénario 2 étudié, quel doit être le mouvement de la tête de Joug liée à l'ensemble **{5+6}** lors de la mêlée poussée par rapport au sol ?

Question 6 : sachant que l'ensemble {5+6} reste toujours parallèle au sol, en déduire la condition reliant les angles θ_2 , $\theta_{3'}$ et $\theta_{5'}$ pour permettre le pilotage du robot dans le scénario 2.

III.1 Modèle géométrique direct

L'objectif de cette partie III.1 est de mener une étude géométrique du mécanisme afin de déterminer le modèle direct, c'est-à-dire l'expression de la position du point M en fonction des angles de commande.

On note $\overline{P_{ij}}$ la matrice de passage de la base b_i à b_j. Ainsi, si on considère un vecteur X, on pourra écrire : $X_{b_i} = \overline{\overline{P_{ij}}} X_{b_i}$.

Question 7 : exprimer les matrices de passage $\overline{P_{02}}$, $\overline{P_{03'}}$ et $\overline{P_{06}}$ en fonction des angles θ_2 , θ_3 , et θ_5 ,.

Question 8: déterminer le vecteur position $\overrightarrow{O_0M}$ dans la base $b_0(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ en fonction de b₁, c₁, c₅, c₆, l₂, l₃ et des matrices de passage $\overline{P_{02}}$, $\overline{P_{03'}}$ et $\overline{P_{06}}$.

Question 9 : en déduire $\overrightarrow{O_0M} = \begin{vmatrix} x_M \\ y_M \\ z_M \end{vmatrix}$ dans la base b_0 en fonction des angles θ_2 , $\theta_{3'}$, et $\theta_{5'}$, des paramètres géométriques I_2 et I_3 ainsi que des données fournies en annexe 4.

III.2 Modèle géométrique inverse

À partir du modèle direct, on cherche à déterminer les angles des motoréducteurs pour générer la position voulue : c'est le Modèle Géométrique Inverse (MGI), qui fait l'objet de cette partie III.2.

On pose :

- $y_{M}^{*} = -b_{1} + y_{M} + (c_{5} + c_{6}) \sin(\theta_{2} + \theta_{3'} + \theta_{5'});$ $z_{M}^{*} = -c_{1} + z_{M} (c_{5} + c_{6}) \cos(\theta_{2} + \theta_{3'} + \theta_{5'}).$

Question 10 : exprimer $\theta_{3'}$ en fonction de I_2 , y_M^* et z_M^* .

En poursuivant la démarche, on peut obtenir l'expression suivante pour θ_2 :

$$\theta_{2} = \operatorname{Arctan} \left[\frac{z_{M}^{*} (I_{2} - I_{3} \sin \theta_{3'}) - y_{M}^{*} I_{3} \cos \theta_{3'}}{y_{M}^{*} (I_{2} - I_{3} \sin \theta_{3'}) + z_{M}^{*} I_{3} \sin \theta_{3'}} \right]$$

Le robot présente des configurations singulières car le calcul du modèle géométrique inverse admet plusieurs solutions qu'il faut gérer lors de la commande des actionneurs.

Question 11 : déduire de la question 10, la ou les configuration(s) du robot à éviter. Proposer des stratégies de commande possibles pour éviter ces cas particuliers.

Lors de ce mouvement, les angles des articulations ont été représentés *Figure 9* en fonction de la position horizontale de M.

Figure 9 - Variation des différents angles lors d'un essai en scénario 2 en fonction de la position de l'extrémité M

Question 12 : calculer la somme $\theta_2 + \theta_{3'} + \theta_{5'}$ pour les positions initiale et finale. Calculer les coordonnées y_M et z_M du point M pour ces deux positions. Conclure quant à la satisfaction des exigences 1.1.1.1 et 1.1.1.4.

III.3 Modèle dynamique du robot

L'objectif de cette partie III.3 est de déterminer les couples que les différents moteurs du robot devront développer lors des scénarios d'entrainement à la mêlée, afin de vérifier l'adéquation du robot choisi avec le comportement souhaité.

On rappelle qu'on se place toujours dans le **scénario 2** avec $\theta_1 = \theta_6 = 0^\circ$. Dans ce scénario, l'ensemble **{5+6}** reste toujours parallèle au sol (mouvement de **translation**).

Données et hypothèses :

- les inerties et masses des pièces (5) et (6) sont négligées ; on néglige aussi la présence de la tête de joug ;
- l'effort de poussée du joueur sur le système via la tête de joug est modélisé $par: \{T, i\} = \{Y_e, \vec{y_1} + Z_e, \vec{z_1}\}$.

par:
$$\left\{ \mathsf{T}_{\mathsf{ext}\to 6} \right\} = \left\{ \begin{array}{c} \mathsf{T}_{\mathsf{e}} \cdot \mathsf{y}_1 + \mathsf{Z}_{\mathsf{e}} \cdot \mathsf{Z}_1 \\ \vec{\mathsf{O}} \end{array} \right\}_{\mathsf{M}};$$

• on définit C₂, C₃ et C₅ tels que : $\{T_{1\rightarrow 2}^{mot}\}=\{\overrightarrow{0}_{C_2,\overrightarrow{x_1}}\}_{O_2}$, $\{T_{2\rightarrow 3}^{mot}\}=\{\overrightarrow{0}_{C_3,\overrightarrow{x_2}}\}_{O_3}$ et $\{T_{4\rightarrow 5}^{mot}\}=\{\overrightarrow{0}_{C_5,\overrightarrow{x_4}}\}_{O_2}$.

Question 13 : déterminer l'expression littérale des vitesses $\overline{V_{G_{34},3+4/0}}$ et $\overline{V_{G_{56},5+6/0}}$.

Question 14 : déterminer l'expression littérale des accélérations $\overrightarrow{\Gamma_{G_{34},3+4/0}}$ et $\overrightarrow{\Gamma_{G_{56},5+6/0}}$.

Question 15 : en appliquant le principe fondamental de la dynamique à l'ensemble **{5+6}**, déterminer le couple C_5 qui doit être délivré à la sortie du motoréducteur de l'axe 5 du robot pour ce mouvement.

Question 16 : en appliquant le principe fondamental de la dynamique, déterminer le couple C₃ qui doit être délivré à la sortie du motoréducteur de l'axe 3 du robot pour ce mouvement.

Question 17 : expliquer la démarche nécessaire pour le calcul du couple C_2 . Préciser le ou les isolements effectué(s), les inventaires des actions mécaniques extérieures et la ou les équations utilisée(s).

La mise en œuvre de cette démarche étant particulièrement calculatoire, une analyse numérique a été menée et a permis d'obtenir les courbes suivantes (*Figure 10*).

l'extrémité M

Question 18 : relever sur les courbes les valeurs des couples C_{2max} et C_{3max} et les comparer aux données fournies par le constructeur en annexe 4. Conclure.

IV. ÉTUDE DE LA COMMANDE DE L'AXE 1

L'objectif de cette partie est d'étudier la robustesse de la commande en position de la tête de joug. Dans un premier temps, on modélisera le système pour déterminer son comportement afin de lui associer un correcteur adapté. On dimensionnera ensuite ce correcteur pour répondre au cahier des charges.

Dans cette partie IV, on s'intéresse au **scénario 3**, dans lequel la mêlée tourne autour de l'axe 1 du robot correspondant à l'axe $(O_0, \vec{y_1})$, en considérant le cas le plus défavorable où le bras du robot est complétement tendu (voir *Figure 11*).

Figure 11 - Position étudiée lors de la partie IV

Aussi, le modèle adopté pour cette partie IV reste le modèle cinématique simplifié présenté sur la *Figure 8*.

Cahier des charges :

Piloter l'axe robot	e 1	du	Écart statique en présence d'une perturbation échelon de position	ε _s =0
			Marge de phase	M _φ ≥45°
			Bande passante à 0dB en BO	BP _{0dB} =3 rad.s ⁻¹

Données et hypothèses :

• l'action du joueur sur la tête de joug en P est : $\{T_{ext\to 6}\} = \{X_e.\overline{x_1} + Z_e.\overline{z_1}\}_P$ (avec

 $X_e = 2000 \text{ N}$; $Z_e = -4000 \text{ N}$;

- les liaisons sont supposées parfaites ;
- les inerties et masses du poignet {5+6} et de la tête de joug sont négligées.
- les angles θ_2 et θ_3 , sont proches de $\pi/2$;
- $\theta_1 = (\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{z_0}, \overrightarrow{z_1});$
- la vitesse de rotation en sortie de réducteur est notée : $\omega_1(t) = \omega_{1/0}(t) = \dot{\theta}_1(t)$;
- on définit C₁ tel que : $\{T_{0 \to 1}^{mot}\} = \begin{cases} \vec{0} \\ C_1 \cdot \vec{y_1} \end{cases}_{O_0}^{O_1}$.

Question 19 : déterminer l'expression du moment d'inertie I_{eq} de l'ensemble en mouvement, ramenée sur l'axe $(O, \overrightarrow{y_1})$ de sortie du réducteur (axe 1 du robot). Calculer I_{eq} . Déterminer l'expression de C_1 .

L'équation mécanique et l'équation électrique pour un moteur brushless sont similaires à celles d'un moteur à courant continu avec une inductance et une résistance équivalentes. On donne le schéma incomplet de l'asservissement en position dans le document réponse DR2.

Données et hypothèses :

- On prendra c_r(t) le couple résistant équivalent sur l'arbre moteur dû à la poussée latérale du joueur sur le joug, constant et égal à 10 N.m.
- Caractéristiques cinématiques de l'axe 1 associé au mouvement :
 - rapport de transmission du réducteur : r = $\frac{\omega_m}{\omega_1}$ = 666 ;
 - o rendement du réducteur égal à 1.
- Caractéristiques du moteur brushless :
 - \circ inertie moteur : I_m=0,00746 kg. m²;
 - les frottements secs sont négligés ;
 - les frottements visqueux équivalents sur l'arbre moteur sont notés $f_v=7.10^{-2}$ N.m.s ;
 - L_{eq}: l'inductance de l'induit est négligée ;
 - équation du comportement électrique : $u(t) = R_{eq}.i(t) + e(t)$;
 - équation traduisant la loi de Lenz : $e(t) = k_T \cdot \omega_m(t)$;
 - équation traduisant la loi de Laplace : $c_m(t) = k_E.i(t)$;
 - \circ R_{eq} : la résistance de l'induit est de 5 Ω ;
 - pour la suite, on utilisera k tel que k = $k_T = k_E$ avec $k_T = 1,2$ V.s.rad⁻¹.

Question 20 : déterminer l'expression du couple $c_m(t)$ en fonction de $c_r, I_{_m}, I_{_{eq}}, f_v, r, \omega_m$ et $\dot{\omega}_m$.

Pour la suite, on notera F la transformée de Laplace de la fonction f : F(p)=L[f(t)].

Question 21 : appliquer la transformation de Laplace aux grandeurs et aux équations électriques et mécaniques modélisant le comportement de ce système. Compléter sur le document réponse DR2 les trois blocs grisés du schéma-blocs.

Question 22: déterminer les fonctions de transfert $H_1(p)$ et $H_2(p)$ telles que $\Omega_1(p)=H_1(p).I(p)-H_2(p).C_r(p).$

Question 23 : déterminer en appliquant le théorème de la valeur finale, la valeur de la vitesse angulaire de l'axe $\omega_1(t)$ en régime permanent pour des entrées de type échelon d'amplitudes $I_0=22$ A et $C_{r_0}=10$ N.m.

En réalisant un essai avec $I_0=22$ A et $C_{r_0}=10$ N.m, on obtient la courbe expérimentale tracée sur le DR3.

Question 24 : sur le document réponse DR3, relever les valeurs de K et τ sur la courbe expérimentale de $\omega_1(t)$ et comparer avec les résultats de la question 23.

Question 25 : remplir les 3 blocs restants du schéma-blocs de l'asservissement de position du robot sur le document réponse DR2.

Question 26 : déterminer les fonctions de transfert $H_3(p)$ et $H_4(p)$ telles que $\theta_1(p)=H_3(p).\theta_c(p)-H_4(p).C_r(p)$, sachant qu'à ce stade, C(p)=1.

On décide maintenant d'utiliser le correcteur $C_1(p) = \frac{1}{p}$.

Question 27 : justifier un tel choix.

Question 28 : montrer que le système ne peut être stable avec ce type de correcteur.

On représente le diagramme de Bode de la fonction $C_1(p)$.FTBO (*Figure 12*).

On place en série un correcteur à avance de phase de fonction de transfert $C_2(p)=K\frac{1+a.\tau,p}{1+\tau,p}$ avec a>1, dont le diagramme de Bode est donné *Figure 13*.

Figure 13 - Tracé du diagramme de Bode de C₂(p)=K $\frac{1+a.\tau.p}{1+\tau.p}$

Question 30 : déterminer la valeur de la phase ϕ_{max} que le correcteur à avance de phase doit ajouter pour satisfaire le critère de marge de phase. Calculer a et τ pour obtenir la valeur de ϕ_{max} souhaitée.

Question 31 : déterminer K pour respecter le critère en bande passante.

Question 32 : conclure quant au choix de ce correcteur.

V. MODELISATION DE LA TETE DE JOUG INSTRUMENTEE

L'objectif de la partie V est de valider la conception et le dimensionnement de la tête de joug instrumentée, au regard des exigences définies en annexe 3.

Pour la suite du sujet, dans le but d'alléger les notations, on introduit la base b $(\vec{x}, \vec{y}, \vec{z})$ telle que $\vec{x} = \vec{x_6}$, $\vec{y} = \vec{y_6}$ et $\vec{z} = \vec{z_6}$.

La tête de joug instrumentée (*Figure 14*) est liée au robot au point N par l'intermédiaire d'un changeur d'outil automatique (voir partie VI). La tête de joug est constituée de deux plaques (7) et (8) entre lesquelles s'intercalent les deux capteurs d'efforts uniaxiaux. Le guidage entre ces deux plaques est réalisé par quatre liaisons pivot-glissant.

Figure 14 - Modèle 3D de la tête de joug instrumentée.

V.1 Principe de la mesure d'effort

L'objectif de la partie V.1 est de vérifier que le dispositif de mesure choisi par les concepteurs satisfait à l'exigence 1.2 : « Mesurer l'effort de poussée ».

Pour la version du Strongarm étudiée, la mesure de l'effort de poussée du joueur sur le joug est uniquement effectuée selon la direction z. Les joueurs de première ligne ayant souvent une épaule dominante lors de la poussée, les concepteurs ont choisi d'utiliser deux capteurs d'efforts uniaxiaux placés au niveau de chaque épaule, afin de distinguer la contribution de chaque épaule à la poussée.

Question 33 : si on ne tient pas compte des capteurs à ce stade, quel est le degré d'hyperstatisme de l'assemblage entre (7) et (8) ? Quelle est la liaison équivalente entre ces deux solides. Discuter de cette conception au regard notamment du choix de capteurs effectué.

Le torseur de l'action du joueur sur le joug réduit au point N est défini par :

$$\left\{ \mathsf{T}_{j \to 8} \right\} = \left\{ \begin{matrix} \mathsf{X}_{j8} & \mathsf{L}_{j8} \\ \mathsf{Y}_{j8} & \mathsf{M}_{j8} \\ \mathsf{Z}_{j8} & \mathsf{N}_{j8} \end{matrix} \right\}_{b}$$

Question 34 : à partir du choix et de l'implantation des capteurs sur le système, nommer la ou les composantes de ce torseur qui pourront être mesurées par le joug instrumenté. Conclure quant à la satisfaction de l'exigence 1.2.2.

V.2 Validation de la géométrie retenue pour la tête de joug

L'objectif de la partie V.2 est de vérifier le dimensionnement de la fourche qui sert d'interface entre la tête de joug et le robot.

Sur le premier prototype du Strongarm, la tête de joug était liée au robot par une liaison encastrement en A (de sorte que le point A coïncidait avec le point N extrémité du robot). De fait, l'axe de poussée n'étant pas concourant avec l'axe $(O_5, \vec{x_5})$ (axe 5) du robot, il se créait lors de la poussée un moment autour de l'axe $(O_5, \vec{x_5})$ qui mettait le robot en défaut (couple supérieur au couple admissible de l'axe 5). Pour pallier ce problème, il a été décidé de rajouter une fourche entre la tête de joug et le robot.

Dans une première approche, on utilise le modèle représenté *Figure 15* (figure de droite), pour laquelle on formule l'hypothèse du problème plan. Avec cette hypothèse, les points P_1 et P_2 sont confondus en P et on a alors $F_p=F_{p_1}+F_{p_2}$. On assimile la tête de joug à deux solides encastrés en A. Le tronçon (**7b**) (étudié partie V.3) est pour cette étude considéré indéformable.

On se place dans le **scénario de mêlée 1**, lorsque le joueur pousse suivant l'axe z, les épaules étant au contact du coussin en P_1 et P_2 .

Figure 15 - Modélisation de la fourche.

Données et hypothèses :

- les matériaux sont continus, homogènes et isotropes ;
- le tronçon (7b) est supposé indéformable dans cette étude.

- $\overrightarrow{NP_1} = R.\vec{z} + a.\vec{x}$;
- $\overrightarrow{NP_2} = R.\vec{z} a.\vec{x}$
- $\overrightarrow{\text{GP}}=\text{R.}\overrightarrow{z_{L}}$
- R=230 mm
- a=170 mm

- b=20 mm
- F_{p1}=1500 N
- F_{p2}=2000 N
- R_e=225 MPa
- E=71 GPa

Figure 16 - Section retenue pour la fourche (7a).

Question 35 : déterminer le torseur des actions mécaniques de cohésion le long de la poutre modélisant la fourche **(7a)**, exprimé dans la base locale $b_L(\vec{x}, \vec{y_L}, \vec{z_L})$, en fonction de θ et de F_p . À quelles sollicitations la fourche **(7a)** est-elle soumise ? Préciser quel type de sollicitation est occulté avec l'hypothèse du problème plan.

Pour la question suivante, on admet que la sollicitation prépondérante est la flexion suivant \vec{x} .

Question 36 : la section retenue étant rectangulaire (de largeur b et de hauteur h), déterminer la contrainte maximale $\sigma_{fx_{max}}$ en fonction de F_{p_1} , F_{p_2} , R, b et h. Déterminer l'expression de la hauteur h_{min} nécessaire pour que la poutre ne plastifie pas (on considère un coefficient de sécurité s = 4). Faire l'application numérique.

Question 37 : une analyse par éléments finis avec la géométrie finalement retenue est présentée en annexe A5.2. Conclure quant à la forme choisie, et le cas échéant, proposer une modification de la forme de la fourche.

V.3 Prise en compte de la déformation des plaques (7) et (8)

L'objectif de la partie V.3 est de vérifier le dimensionnement des deux plaques afin de s'assurer qu'elles participent à la satisfaction de l'exigence 1.4.1.1. Pour cela, on cherche à déterminer la raideur de l'ensemble suivant z.

Figure 17 - Modèle retenu pour la partie V.3

Lors de la poussée, le joueur exerce une pression sur une mousse liée à une plaque de bois repérée (8). Cette plaque est liée à une plaque en aluminium (7) par l'intermédiaire de 4 liaisons pivot-glissant et des 2 capteurs d'effort.

Une des fonctions de cette conception est de garantir une certaine compliance de la tête de joug, afin de se rapprocher le plus fidèlement possible des sensations ressenties par le joueur en conditions réelles.

Données et hypothèses :

- pour des raisons de symétrie, on fait l'hypothèse du problème plan dans (\vec{y}, \vec{z}) ;
- la plaque (7b) est liée à la fourche (7a) étudiée précédemment par une liaison encastrement en A. On fait l'hypothèse que la fourche (7a) est indéformable. Les plaques (7b) et (8) sont encastrées en C.
- $\overrightarrow{AB} = \overrightarrow{DC} = -R.\vec{y}$
- $\overrightarrow{BC} = e.\vec{z}$
- $\left\{ \mathsf{T}_{7 \to 8} \right\} = \left\{ \begin{matrix} \mathsf{Y}_{\mathsf{D}} \cdot \vec{\mathsf{y}} \\ \mathsf{L}_{\mathsf{D}} \cdot \vec{\mathsf{x}} \end{matrix} \right\}_{\mathsf{D}}$
- Pour chacun des tronçons AB (tronçon 1), BC (tronçon 2) et CD (tronçon 3), on définit :
 - une base locale $b_i(\vec{x_i}, \vec{y_i}, \vec{z_i})$ avec i∈[1,3] telle que :

$$\overrightarrow{z_{1,2,3}} = \overrightarrow{x} \qquad et \qquad \begin{cases} \overrightarrow{AG_1} = u_1 . \overrightarrow{x_1} \\ \overrightarrow{BG_2} = u_2 . \overrightarrow{x_2} \\ \overrightarrow{CG_3} = u_3 . \overrightarrow{x_3} \end{cases}$$

- $\circ~G_i,$ centre de gravité de la section droite du tronçon i, située à une abscisse u_i selon $\overrightarrow{x_i}$;
- \circ des modules d'élasticité : E₁, E₂ et E₃ ;
- o des moments quadratiques autour de z_i : I_1 , I_2 et I_3 ;
- \circ des sections de surfaces : S₁, S₂ et S₃.

Question 38 : écrire les torseurs d'actions mécaniques de cohésion $\{T_{coh}^i\}$ pour les tronçons 1, 2 et 3. Exprimer le résultat dans la base b_i correspondant à chaque tronçon.

Question 39 : exprimer l'énergie de déformation W₃ relative au tronçon 3.

À l'aide d'un logiciel, on a pu établir l'expression littérale de l'énergie de déformation totale $W = \sum_{i=1}^{3} W_i$:

$$W = \frac{R(F_p^2R^2 + 3F_pL_DR - 3F_pY_DRe + 3L_D^2 - 6L_DY_De + 3Y_D^2e^2)}{6E_1I_1} + \frac{e(3L_D^2 - 3L_DY_De + Y_D^2e^2)}{6E_2I_2} + \frac{F_p^2e}{2E_2S_2} + \frac{L_D^2(R - e)}{2E_3I_3} + \frac{Y_D^2(R - e)}{2E_3S_3}$$

Question 40 : en appliquant le théorème de Castigliano, écrire l'équation aux dérivées partielles reliant le déplacement u_{z_c} du point C suivant z à l'énergie de déformation totale W et à l'effort extérieur F_p . Par application du théorème de Ménabréa, exprimer

les deux relations aux dérivées partielles reliant l'énergie de déformation totale W aux deux inconnues hyperstatiques Y_D et L_D (on ne demande aucun calcul pour cette question).

Question 41 : en déduire la raideur k_z telle que $F_p = k_z . u_{z_c}$. Faire l'application numérique et conclure par rapport au respect du cahier des charges.

V.4 Évaluation du risque d'arc-boutement

Lors de la poussée, un phénomène d'arc-boutement dans les deux liaisons pivotglissant supérieures est susceptible de se produire. L'objectif de cette partie V.4 est de déterminer les conditions à respecter pour éviter ce phénomène.

Figure 19 - 1^{ère} modélisation du guidage entre (7) et (8)

On considère que l'action de poussée du joueur sur la tête de joug est modélisée par un glisseur dont la droite support (P,\vec{z}) coupe l'axe (C,\vec{x}) entre les points C et D, comme l'indique le modèle adopté représenté *Figure 19*.

De même, on estime en première approximation que le phénomène d'arc-boutement ne se produit que dans une seule des deux liaisons pivot-glissant. Cette étude est donc effectuée dans l'hypothèse où l'arc-boutement se produit dans le guidage de gauche. On admet qu'il n'y a alors plus de contact entre (7) et (8) dans le guidage de droite.

Données et hypothèses :

- pour cette étude, on adopte un modèle de pression linéique pour le contact entre les plaques (7) et (8). Le contact se fait avec frottement selon le modèle de Coulomb. On note f le coefficient de frottement entre les deux pièces et on place l'étude à la limite du glissement ;
- en fonctionnement normal, on a toujours : $P \in [CD]$.
- $\overrightarrow{AB} = L.\vec{z}$
- $\overrightarrow{OO_g} = -\frac{e}{2}.\vec{x}$
- $\overrightarrow{OD} = \frac{L_t}{2}.\vec{x} + h.\vec{z}$
- $\overrightarrow{O_q M} = \frac{d}{2}.\vec{x} + z.\vec{z}$

- $\overline{O_g P} = X.\vec{x} + \lambda.\vec{z}$
- e=330 mm
- d=20 mm
- L_t=610 mm
- f=0,1

Question 42 : en étudiant la zone de contact inférieure (inf) $0 \le z \le \frac{L}{2}$, exprimer littéralement la pression linéique P(z) en fonction de p₀,L et z. En déduire l'expression de \overrightarrow{dF} , action élémentaire de la plaque (7) sur la plaque (8) au point M dans la zone de contact considérée, en fonction de p₀,L, f et d.

Question 43 : déterminer le torseur $\{T_{7\rightarrow 8}^{inf}\}$ des actions mécaniques de la plaque (7) sur la plaque (8) dans la zone de contact $0 \le z \le \frac{L}{2}$, exprimé au point B.

Soit I un point appartenant à la zone de contact $0 \le z \le \frac{L}{2}$, tel que $\overrightarrow{BI} = \frac{d}{2} \cdot \vec{x} + z_1 \cdot \vec{z}$.

Question 44 : déterminer z_1 en fonction de L tel que le torseur $\{T_{7\to8}^{inf}\}$ soit un glisseur au point I.

Question 45 : par analogie avec le résultat de la question 43, déterminer le torseur $\{T_{7\rightarrow8}^{sup}\}$ des actions mécaniques de la plaque (7) sur la plaque (8) dans la zone de contact supérieure $-\frac{L}{2} \le z \le 0$ au point A.

Question 46 : déterminer l'expression X_{lim} , valeur de X en deçà de laquelle il n'y aura pas d'arc-boutement. En déduire L_{min} valeur de L qui assure un bon fonctionnement. Faire l'application numérique.

Une analyse fine des jeux et tolérances géométriques des différentes pièces montre qu'on peut reconsidérer la modélisation du contact entre (7) et (8) comme l'indique la *Figure 20* ci-après.

Figure 20 - 2^{ème} modélisation du guidage entre (7) et (8)

Question 47 : cette configuration est-elle plus favorable que la précédente, si on cherche à minimiser L ? Par analogie avec les questions précédentes, déterminer la nouvelle valeur de L_{min} . Sur le système réel, on mesure L=95 mm. Conclure.

VI. MODELISATION ET CHOIX DE L'INTERFACE TETE DE JOUG - ROBOT

L'objectif de cette partie VI est de valider le dimensionnement du changeur afin de vérifier que le modèle choisi pour le Strongarm est bien adapté.

Conformément à l'exigence 1.5, il est nécessaire de pouvoir changer rapidement la tête de joug pour pouvoir s'adapter au contexte d'utilisation de la machine et pour éviter une durée d'indisponibilité trop longue en cas de changement de configuration. Dans cette optique, il a été décidé d'utiliser un changeur d'outil automatique commercialisé par l'entreprise Destaco.

Figure 21 - Changeur d'outil automatique Destaco RTP/RQC-800

Le changeur (6), solidaire du robot, est inséré dans la platine (7), liée à la tête de joug, guidé par deux colonnes d'indexage (voir *Figure 21* et *Figure 40* en annexe A6.3). Le changeur est un vérin double effet dont le piston (10) subit l'action de **5 ressorts** de sécurité. Lorsqu'on alimente le vérin dans sa chambre haute, la came hexagonale liée au piston se déplace vers le bas et vient plaquer les six axes de verrouillage (9a), (9b), ..., (9f) contre la butée de verrouillage de la platine (7). L'accouplement des pièces (6) et (7) est alors effectif.

Figure 22 - Architecture du dispositif de verrouillage

Lorsqu'on coupe l'alimentation en air comprimé, les cinq ressorts de sécurité maintiennent le piston (10) en position sortie. Pour séparer la platine (6) de la platine (7), il faut alors alimenter le vérin dans sa chambre basse pour que le piston remonte et que le déverrouillage soit effectué (voir *Figure 37* en annexe A6.1).

VI.1 Détermination de l'effort d'arrachement limite

L'objectif de cette partie VI.1 est de vérifier si le changeur automatique respecte l'exigence 1.5.

VI.1.a Analyse de la liaison axes de verrouillage/cage

La *Figure* 23 montre les axes de verrouillage (9) logés dans la cage appartenant au changeur (6). Le piston (10) et l'axe (9f) ont été masqués sur la figure. Les surfaces sphériques de l'axe ne sont pas en contact avec la cage.

Figure 23 - Géométrie des axes de verrouillage. A droite, l'axe (9a)

Question 48 : par analyse de la géométrie des contacts entre l'axe **(9a)** et la cage du changeur **(6)**, montrer qu'on peut modéliser cet assemblage par deux liaisons élémentaires en parallèle. En déduire le torseur cinématique $\left\{V_{9a/6}\right\}_{O_{9a}}$. Déterminer

alors le degré d'hyperstatisme de cet assemblage et discuter du choix de la géométrie des axes de verrouillage.

Pour la suite du sujet, les assemblages des axes (9) avec (6) sont considérés isostatiques.

VI.1.b Modélisation du mécanisme

La *Figure 24* propose un premier modèle du dispositif de verrouillage, représenté dans le plan.

Données et hypothèses :

- seuls deux des six axes de verrouillages ((9a) et (9d)) et un des cinq ressorts sont représentés sur ce schéma ;
- les effets de la pesanteur sont négligés ;
- toutes les liaisons sont considérées parfaites ;
- on modélise l'effort d'arrachement appliqué sur la tête de joug liée à (7) par :

$$\{\mathsf{T}_{\mathsf{ext}\to7}\} = \left\{ \begin{matrix} \mathsf{F}_7.\vec{z} \\ \vec{0} \end{matrix} \right\}_{\mathsf{N}_7};$$

- les liaisons entre les 6 axes (9) et les pièces (6), (7) et (10) sont décrites sur la Figure 23.
- α=62°
- β=106°

Question 49 : réaliser le graphe de structure du mécanisme, en faisant bien apparaître les actions mécaniques. Le mécanisme comportant six dispositifs identiques disposés en hexagone (voir *Figure 23*), on peut ne représenter qu'un seul axe de verrouillage **(9a)** sur le graphe de structure.

Figure 24 - Schéma cinématique du dispositif de verrouillage (vue plane)

Question 50 : déterminer le degré d'hyperstatisme **du mécanisme complet**. En cas d'hyperstatisme, proposer si nécessaire des modifications à apporter pour diminuer ou réduire à 0 ce degré d'hyperstatisme.

V.1.c Calcul de l'effort d'arrachement limite

Dans un premier temps, on cherche à déterminer l'effort d'arrachement limite F_{lim} correspondant à la valeur de F_7 provoquant la rupture d'équilibre **lorsque le changeur n'est plus alimenté en air comprimé**.

Question 51 : le système est constitué de cinq ressorts de sécurité (voir annexes A6.3 et A6.5) préchargés montés en parallèle entre les pièces **(6)** et **(10)**. Déterminer F_{5r} tel que $\{T_{5res \rightarrow 1}\}= {F_{5r}.\vec{z} \atop \vec{0}}_{B}^{F}$, lorsque le mécanisme est en position verrouillée. Faire l'application numérique. Sachant qu'on considère la pression atmosphérique p₀=1 bar, calculer la pression d'air nécessaire dans la chambre inférieure du vérin pour initier le déverrouillage du système ? Conclure quant à l'ordre de grandeur de la pression déterminée.

Question 52 : expliquer la démarche à appliquer (isolements successifs, théorèmes et équations utilisés) pour déterminer l'expression de F_{lim} en fonction de F_{5r} . Mettre en œuvre cette démarche pour déterminer F_{lim} . Faire l'application numérique. Conclure quant à la satisfaction de l'exigence 1.5.2.1.

En réalité, le profil du piston est tel que représenté sur la *Figure 25a*. Lorsqu'un effort d'arrachement est appliqué sur **(7)**, l'axe **(9)** vient en contact avec le piston hexagonal **(10)** aux 2 points I'_{910} et I''_{910} (*Figure 25b*).

Données et hypothèses :

•
$$\overline{I_{910}I'_{910}} = -a_{10}.\overline{u_2}$$

• $\overrightarrow{I_{910}I''_{910}} = -b_{10}.\overrightarrow{u_2} + c_{10}.\overrightarrow{z}$

- a₁₀=c₁₀=2 mm
- b₁₀=3 mm

Question 53 : dans cette position, une augmentation de F_7 peut-elle provoquer le déverrouillage, induit par la translation du piston **(10)** suivant $-\vec{z}$? Expliquer qualitativement le principe de ce mécanisme de verrouillage. Quelle est alors la valeur de F_{lim} ?

V.1.d Modélisation des contacts galets/rainures

Les essais de dimensionnement menés par l'entreprise Destaco montrent que qualitativement, la rupture de l'accouplement résulte nécessairement de la déformation des éléments composant le système de verrouillage.

Données et hypothèses :

- pour cette partie, on considère que le critère limitant est la déformation des axes de verrouillage, et que le dimensionnement est réalisé sur le contact (7) sur (9) en l₉₇;
- on assimile les axes à des cylindres de diamètre d_9 et de longueur L_9 ;
- les axes (9) et la platine (7) sont en acier EN X105CrMo17 trempé sous vide.
- d₉=14 mm
- L₉=16 mm

R_g=340 MPa
v=0.3

• E=210 GPa

D'après l'étude menée question 52, on peut écrire F_{79a} =k. F_7 avec k=0,35. On rappelle que la contrainte tangentielle maximale dans les pièces en contact est donnée par : τ_{max} =0,315 p_{max} .

Question 54 : en utilisant le modèle de Hertz ainsi que le tableau fourni en annexe 7, déterminer l'expression de la pression maximale de contact p_{max} à laquelle est soumis l'axe. En déduire la valeur maximale de F_{lim}. À partir de la documentation Destaco en annexe A6.2, déterminer le coefficient de sécurité adopté par le constructeur dans le cadre des hypothèses formulées dans cette étude.

VI.2 Analyse de la méthode de dimensionnement retenue par Destaco

L'objectif de cette partie VI.2 est de vérifier si le modèle adopté partie VI.1 est valide au regard de la documentation constructeur.

L'annexe A6.6 donne la procédure de dimensionnement préconisée par le fabricant.

Question 55 : expliquer la démarche (théorème utilisé, inventaire des actions mécaniques extérieures, équation(s) utilisée(s)) permettant d'obtenir cette formule. Pourquoi le constructeur préconise-t-il un dimensionnement en fonction du moment M_{t_{eff} et non sur l'effort d'arrachement calculé partie VI.1 ?}

Pour la question suivante, on se place dans le scénario 4 (mêlée effondrée).

Question 56 : en tenant compte des dimensions du changeur d'outil données en annexe A6.4 et en faisant un croquis du modèle adopté, estimer la valeur de M_x moment en M autour de \vec{x} correspondant à un effort de traction T. Ce résultat est-il en cohérence avec les capacités de chargement données en annexe A6.2 ? Si non, expliquer cette incohérence.

VI.3 Vérification du jeu axial maximal sous charge

L'objectif de cette partie VI.3 est de vérifier que la géométrie du changeur automatique permet bien de répondre à l'exigence 1.5.1.

Dans cette partie, on se réfère à la modélisation présentée *Figure 25*. On considère que dans la position représentée, le point H appartient au plan de contact entre les solides **(6)** et **(7)**. Lorsqu'un effort F_7 est appliqué sur **(7)**, les axes se déplacent légèrement suivant \vec{x} (pour l'axe **(9a)**), ce qui provoque l'apparition d'un jeu axial suivant \vec{z} entre les pièces **(6)** et **(7)**.

Données et hypothèses :

- les liaisons sont toujours supposées parfaites ;
- dans cette étude, les déplacements resteront très faibles, on peut donc définir

le torseur des petits déplacements de (9) par rapport à (0) : $\{U_{9/0}\} = \left\{ \frac{\vec{0}}{U_{O_{9},9/0}} \right\}_{O_{9}}$.

Question 57 : déterminer l'expression du déplacement $\delta x = \overline{u_{O_{9},9/0}} \cdot \vec{x}$ en fonction de β et des différentes dimensions.

Question 58 : déterminer le torseur des petits déplacements {U_{7/0}}. En déduire le jeu axial $\delta z = \overrightarrow{u_{H,1/0}} \cdot \vec{z}$ lorsque la platine subit un effort suivant +z. Faire l'application numérique et conclure quant au respect de l'exigence 1.5.1.

Question 59 : le galet se déforme sous charge. En admettant que $F_7 = 5340$ N et en utilisant la théorie de Hertz ainsi que les calculs de la question 54, déterminer la variation de δz liée à cette déformation. Conclure.

VII. SYNTHESE ET PERSPECTIVES D'AMELIORATION

Question 60 : en s'appuyant sur l'ensemble des études effectuées ci-avant, justifier la démarche suivie dans le sujet vis-à-vis de la problématique technique énoncée en préambule.

Le robot ABB IRB 6620 permet d'obtenir en temps réel un certain nombre de mesures au niveau de chaque axe (paramètres cinématiques et couples moteurs). Une possible évolution du système consisterait à supprimer les deux capteurs d'efforts disposés sur la tête de joug.

Question 61 : au regard des différentes études, discuter de la possibilité d'obtenir en temps réel les valeurs des composantes du torseur d'action mécanique du joueur sur la tête de joug, en exploitant uniquement les mesures renvoyées par le robot.

FIN DU SUJET

DOCUMENTATION TECHNIQUE ET ANNEXES

Annexe 1 : la mêlée de rugby

Annexe 2 : analyse fonctionnelle globale du système Strongarm

Annexe 3 : recueil des exigences (partiel)

Annexe 4 : robot IRB 6620

- A4.1 Grandeurs et paramétrages
- A4.2 Schémas cinématiques et paramétrages
- A4.3 Dimensions du robot
- A4.4 Caractéristiques cinématiques des axes 1, 2 et 3
- A4.5 Éléments d'inertie et dimensions du robot
- A4.6 Extraits de la documentation constructeur

Annexe 5 : tête de joug instrumentée

A5.1 Vue de dessus de l'assemblage tête de joug - changeur - robot

A5.2 Étude de la fourche par éléments finis

Annexe 6 : changeur Destaco

- A6.1 Principe de fonctionnement
- A6.2 Données constructeur : renseignements sur le chargement
- A6.3 Vue éclatée du changeur RQC-800 et de la platine RTP-800

A6.4 Dimensions générales du changeur d'outil

- A6.5 Caractéristiques des ressorts et du piston
- A6.6 Méthode de dimensionnement préconisée

Annexe 7 : Aide au calcul : modèle de Hertz

Annexe 1 : La mêlée de rugby

Figure 26 - Position et rôles des joueurs dans une mêlée de rugby

Figure 27 - Diagramme des cas d'utilisation

Figure 28 - Diagramme de contexte

Annexe 3 : Recueil des exigences (partiel)

Figure 29 - Diagramme des exigences (détail)

Figure 30 - Définition des axes du robot IRB 6620

Spécifications												
Capacité de charge		150 Kg										
Des charges suppléme	entaires peuven	t être montées sur le robot :										
 50 kg à la partie 	supérieure											
 100 kg sur sa ba 	ase											
Nombre d 'axes		6										
Protection		IP 54										
		IP 67										
Montage		Au sol, incliné ou su	spendu									
Performances												
Répétabilité de positio	nnement 0,03 n	nm										
Axes	Paramétrage	Zone de travail	Vitesse									
			maxi									
Axe 1 Rotation	$(O_0, \overrightarrow{y_0})$	+ 170° à - 170°	100°/s									
Axe 2 Bras	$(O_2, \overrightarrow{x_1})$	+ 140° à - 65°	90°/s									
Axe 3 Bras	$(O_3, \overrightarrow{x_2})$	+ 70° à - 180°	90°/s									
Axe 4 Poignet	$(O_4, \overrightarrow{Z_3})$	+ 300° à - 300° 150°/s										
Axe 5 Inclinaison	$(O_5, \overrightarrow{x_4})$	+ 130° à - 130°	120°/s									
Axe 6 Rotation	$(O_6, \overrightarrow{Z_5})$	+ 300° à - 300°	190°/s									

Tableau 1 - Spécifications (et définition des axes relatifs à la Figure 31)

Figure 31 - Schéma cinématique spatial et paramétrage

Figure 32 - Schéma cinématique plan dans $(O_0; \overrightarrow{y_0}, \overrightarrow{z_0})$ (avec $\theta_1 = \theta_4 = \theta_6 = 0$)

A4.3 Dimensions du robot

Figure 33 - Dimensions du robot

A4.4 Caractéristiques cinématiques des axes 1, 2 et 3

- Réducteur : r = 666.
- Rendement du réducteur égal à 1.
- Couple nominal : 10 Nm.
- Couple maximal : 25 Nm.
- Vitesse : 3000 5000 tr.min⁻¹.
- Couple de freinage : 10 Nm.

A4.5 Éléments d'inertie et dimens	sions du robot
-----------------------------------	----------------

Solide	Masse m _i et position du	Matrice d'inertie en G _i
	centre de masse G _i	(en kg.m²)
Socle (0)	m ₀ =282,5 kg	$ A_0 0 0 $
	$\overrightarrow{O_0G_0} = y_{C_0} \cdot \overrightarrow{y_0} + z_{G_0} \cdot \overrightarrow{z_0}$	$ I_{G_0,S_0} = (0 B_0 0)$
		$\begin{pmatrix} 0 & 0 & C_0 \end{pmatrix}_{G_0}$
		(9,3 0 0)
		= (0 19,4 0)
		\ 0 0 26,9/ _{G0,R0}
Embase (1)	m ₁ =233,6 kg	$(A_1 - F_1 - E_1)$
	$\overrightarrow{O_0G_1} = \mathbf{x}_{G_4} \cdot \overrightarrow{\mathbf{x}_1} + \mathbf{y}_{G_5} \cdot \overrightarrow{\mathbf{y}_4} + \mathbf{z}_{G_4} \cdot \overrightarrow{\mathbf{z}_1}$	$\overline{I_{G_1,S_1}} = \begin{pmatrix} -F_1 & B_1 & -D_1 \end{pmatrix}$
		$\langle -E_1 - D_1 C_1 \rangle_{G_1}$
		(5,2 -3 -0,6)
		= (-3 11,7 -6,68)
		∖_0.6 _6,68 11,9 / _{G1,R1}
Bras (2)	m ₂ =117 kg	$ (A_2 - F_2 - E_2) $
	$\overrightarrow{O_2 G_2} = \mathbf{x}_{G_2} \cdot \overrightarrow{\mathbf{x}_2} + \mathbf{y}_{G_2} \cdot \overrightarrow{\mathbf{y}_2}$	$\overline{I_{G_2,S_2}} = \left(\begin{array}{cc} -F_2 & B_2 & -D_2 \end{array} \right)$
		$\langle -E_2 -D_2 C_2 \rangle_{G_2}$
		(11,73 0 0)
		= (0 0,88 0)
		\ 0 0 11,36/ _{G₂,R₂}
Ensemble {3+4}	m ₃₄ =246 kg	$ = (A_{34} - F_{34} - E_{34}) $
	$\overline{O_3 G_{34}} = y_{G_{24}} \cdot \overline{y_{3'}} + z_{G_{34}} \cdot \overline{z_{3'}}$	$I_{G_{34},E_{34}} = \begin{pmatrix} -F_{34} & B_{34} & -D_{34} \end{pmatrix}$
		$(-E_{34} - D_{34} - C_{34})_{G_{34}}$
		$\begin{pmatrix} 33 & 0 & 0 \end{pmatrix}$
		$= \begin{pmatrix} 0 & 31,23 & 0 \\ 0 & 5 & 5 & 0 \end{pmatrix}$
		$(0 0 5,81/_{G_{34}})$
Ensemble {5+6}	m ₅₆ =246 kg	$A_{56} - F_{56} - E_{56}$
	$O_5G_{56} = Z_{G_{56}} \cdot \overline{Z_5}$	$I_{G_{56},E_{56}} = (-F_{56} - B_{56} - D_{56})$
		$(-E_{56} - D_{56} - C_{56})_{G_{56}}$
		$\begin{pmatrix} 0,19 & 0 & 0 \\ 0,00 & 0 & 0 \end{pmatrix}$
		$ = \begin{bmatrix} 0 & 0,2 & 0 \\ 0 & 0 & 0,08 \end{bmatrix} $
		νουυ,υογ _{G56}
i ete de joug	m _{tj} =25 кg	
	$MP=c_{tj}.\vec{z_5}$	

Tableau 2 - Éléments d'inertie

b ₁	680 mm	C ₄	400 mm	У _{Go}	86,7 mm	X _{G2}	92,8 mm
b ₂	975 mm	с ₅ +с ₆	200 mm	Z _{G0}	–131 mm	У _{G2}	418 mm
b ₃	200 mm	C _{tj}	575 mm	X _{G1}	-32,6 mm	У _{G34}	152 mm
C ₁	320 mm	l ₂	975 mm	У _{G1}	299,4 mm	Z G ₃₄	210 mm
C ₃	100 mm	l ₃	909 mm	Z _{G1}	148,9 mm	Z G ₅₆	100 mm

Tableau 3 - Valeu	s numériques des	différents paramètres
-------------------	------------------	-----------------------

A4.6 Extraits de la documentation constructeur

Monté sur le sol

Force	Charge d'endurance (en fonctionneme- nt)	Charge max. (arrêt d'urgence)
Force xy	± 7.3 kN	± 15.5 kN
Force z	11.0 ±2.0 kN	11.0 ±3.7 kN
Couple xy	± 18.0 kNm	± 37.2 kNm
Couple z	± 4.4 kNm	± 10.4 kNm

Figure 34 - Diagramme des charges du robot IRB 6620

Figure 35 - Position du centre de gravité *G* de l'ensemble tête de joug + changeur par rapport à l'extrémité du robot (M)

A5.2 Étude de la fourche par éléments finis

Étude réalisée à l'aide de Solidworks Simulation. Le modèle retenu est composé :

- d'une liaison par géométrie fixe (en bas à droite), modélisant la fixation entre la fourche et le robot (via l'interface de changement rapide) ;
- d'un chargement surfacique de norme 3500 N (en haut à gauche), horizontal, modélisant l'effort de poussée du joueur sur le joug.

Figure 36 - Contraintes de Von Mises (vues de face et de droite de l'état déformé)

Annexe 6 : Changeur Destaco

A6.1 Principe de fonctionnement

Figure 37 - Les 2 positions du changeur d'outil automatique

Lors du verrouillage, on alimente la chambre supérieure en air comprimé. Le piston se déplace vers le bas et pousse les 6 axes de verrouillage dans la butée de verrouillage hexagonale, ce qui a pour effet de plaquer la platine sur le changeur. L'alimentation en air comprimé peut alors être arrêtée. Le système est verrouillé.

Pour déverrouiller l'ensemble, il suffit d'alimenter la chambre inférieure en air comprimé. Le piston se déplace vers le haut et libère ainsi les axes de verrouillage.

A6.2 Données constructeur : renseignements sur le chargement

Repére Qté Désignation	Changeur	1 1 Corps	2 1 Piston	3 1 Cage	4 6 Axe de verrouillage	5 1 Plateau	6 2 Piston de détection	7 2 Appui ressort	8 1 Bloc de détection	9 2 Douille de centrage	10 1 Tige présence platine (tailles 800 & 1200 seulement)	11 Doigt présence platine (tailles 800 & 1200 seulement)	20 1 Joint O-ring (corps)	21 1 Vis Sthc (corps)	22 1 Vis Sthc (corps)	23 1 Joint O-ring (piston)	24 1 Joint O-ring (cage)	25 1 Joint O-ring (cage) (tailles 800 & 1200 seulement)	26 1 Goupille (piston)	27 1 Vis Fhc/90 (piston)	28 2 à 5 Ressort (corps)	29 1 Goupille (corps)	30 2 Vis Chc (cage)	31 1 Ressort (doigt) (tailles 800 & 1200 seulement)	32 2 Joint O-ring (piston de détection)	33 2 Ressort (piston de détection)	34 2 Vis Chc (appui ressort)	35 1 Joint O-ring (bloc)	36 1 Connecteur M12 (bloc) (option)	37 3 Vis Chc (bloc)	38 1 Kit détection (option)
Changeur						24							23												$(33)^{-1}(7) (8)^{-1}(35)$			\rightarrow			

Figure 39 - Vue éclatée du changeur RQC-800

Platine outil

Ø

) 、)))

104

	Corps	Butée	Indexeur dépincé	Indexeur cylindrique	Goupille	Rondelle frein	Vis Chc	
outil	-	-	-	-	-	4	4	
Platine	101	102	103	104	105	106	107	

102

103

Þ

A6.3 Vue éclatée du changeur RQC-800 et de la platine RTP-800

Figure 41 - Dimensions générales du changeur d'outil

A6.5 Caractéristiques des ressorts et du piston

- Nombre de ressorts : 5
 - Raideur : k=940 N.m⁻¹
- Longueur à vide : l₀=110 mm
- Longueur en position verrouillée : l_v=30 mm
 - Longueur en position déverrouillée : l_d=20 mm
 - Diamètre du piston : d_p=80 mm
 Diamètre do lo fiso : d -24 mm
 - Diamètre de la tige : d_t=24 mm

A6.6 Méthode de dimensionnement préconisée

Figure 42 - Méthode de dimensionnement préconisée par Destaco

			Contact ponctuel		Co				
		Solides quelconques	Sphère/sphère	Sphère/plan	Cylindre/cylindre				
Types de	e contacts		$ \begin{array}{c} $	$R_2 = \infty$	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
		Ellipse (a, b)	Cercle (a)	Cercle (a)	Rectangle (∞, b)				
Surface de contact	Forme		2g	Sa	q charge par unité de long				
	Dimensions	$a = m \sqrt[3]{\frac{3\pi}{2} \frac{k_1 + k_2}{C_1 + C_1' + C_2 + C_2'}} N$ b = $\frac{n}{m}a$	$a = \sqrt[3]{\frac{3\pi}{4}(k_1 + k_2)\frac{R_1R_2}{R_1 + R_2}N}$	$a = \sqrt[3]{\frac{3\pi}{4}(k_1 + k_2)RN}$	$b = 2\sqrt{(k_1 + k_2)\frac{R_1R_2}{R_1 + R_2}}$				
Rapproc	hement δ	$\delta = r \frac{3\pi}{4a} (k_1 + k_2) N$	$\delta = \sqrt[3]{\frac{9\pi^2}{16}(k_1 + k_2)^2 \frac{R_1 + R_2}{R_1 R_2} N^2}$	$\delta = \sqrt[3]{\frac{9\pi^2}{16} \frac{(k_1 + k_2)^2}{R} N^2}$	$\delta = 3,84 \cdot 10^{-5} \frac{N^{0,5}}{L^{0,5}}$				
Pression	n max p _{max}	$p_{max} = \frac{3}{2} \frac{N}{\pi ab}$	$p_{max} = \frac{3}{2} \frac{N}{\pi a^2}$	$p_{max} = \frac{3}{2} \frac{N}{\pi a^2}$	$p_{max} = 0,59 \sqrt{\frac{E_{1}E_{2}}{E_{1} + E_{2}}} \frac{R_{1}}{R_{1}}$ Si $\nu = 0,3$: $p_{max} = \frac{2N}{\pi Lb} = \frac{2q}{\pi b}$ $p_{max} = \frac{1}{\pi} \sqrt{\frac{1}{k_{1} + k_{2}}} \frac{R_{1} + R_{2}}{R_{1}R_{2}}$				
Profonde (pour ν =	eur pour $ au_{max}$ = 0, 3)	Fonction de l'excentration de l'ellipse	h = 0,5a	h = 0,5a	$h = \frac{\pi}{4}b$				

Annexe 7 : Aide au calcul - modèle de Hertz

* avec : $k_i = \frac{1 - \nu_i^2}{\pi E_i}$

Tableau 5 - Aide au calcul - modèle de Hertz

Modèle CMEN-D Non (Suivi, s'il y a	OC v2 ©NEOPTEC n de famille : lieu, du nom d'usage)																		
	Prénom(s) :																		
	Numéro Inscription : (Le	numéro	est cel	ui qui figu	ıre sur la	convoc	ation ou	ı la feui	lle d'érr	argem	Né(e	e) le :]/]/[
(Remplir cette partie a Concours	à l'aide de la notice) / Examen :						s	ectio	on/S	oécia	lité/Séı	ie :	 			 	 		
	Epreuve :						I	Matiè	ere :				 . Se	ssio	1 :	 	 		
 Remplir soigneusement, sur CHAQUE feuille officielle, la zone d'identification en MAJUSCULES. Ne pas signer la composition et ne pas y apporter de signe distinctif pouvant indiquer sa provenance. Numéroter chaque PAGE (cadre en bas à droite de la page) et placer les feuilles dans le bon sens et dans l'ordre. Rédiger avec un stylo à encre foncée (bleue ou noire) et ne pas utiliser de stylo plume à encre claire. N'effectuer aucun collage ou découpage de sujets ou de feuille officielle. Ne joindre aucun brouillon. 																			

EAE SIM 2

DR1 à DR3

Tous les documents réponses sont à rendre, même non complétés.

(D)

NE RIEN ECRIRE DANS CE CADRE

DOCUMENT REPONSE - DR1

DOCUMENT REPONSE - DR2

DOCUMENT REPONSE - DR3

 ω_1 (rad.s^-1) en fonction du temps